
AD-A246 079

NAVAL POSTGRADUATE SCHOOL
Monterey, California

a

DTIC CC -W
-LECTE

FEB 201992

0S U THESIS

NAVAL GUNFIRE SUPPORT: AN EXPANDABLE,
OBJECT-ORIENTED, PROCESS-BASED SIMULATION

by

Richard L. Darden

September 1991

Thesis Advisor: Michael P. Bailey

Approved for public release; distribution is unlimited

92-03985
92 " t 141Illl l! l Illti!ll itt

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Ia. REPORT SECURITY CLASSIFICATION I b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABIUTY OF REPORT

Approved for public release; distribution is unlimited
21b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School OR
6c. ADDRESS (City, State, end ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION

I

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT [TASK i WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Including Security Classification)
NAVAL GUNFIRE SUPPORT: AN EXPANDABLE, OBJECT-ORIENTED, PROCESS-BASED SIMULATION

12 PERSONAL AUTHOR(S)
DARDEN, Richard L
13 TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. Page Count
Master's thesis FROM TO 11991, September 1160
16. SUPPLEMENTAL NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and Identify by block number)

FIELD GROUP SUB-GROUP Object-orientation, MODSIM, NGFS, Naval Gunfire Support, Programming,
Process-based, Simulation, IBM PC

19. ABSTRACT (Continue on reverse If necessary and Identify by block number)

This thesis documents the design and implementation of a simulation ,,f Naval Gunfire Support (NGFS) in a modern,
object-oriented, process-based simualtion language called MODSIM II by CACI Corporation of La Jolla, CA. The
main intent of the simulation is to build a model that will allow the Naval Weapons Support Center, of Crane, Indiana,
to explore the effects of the individual component reliability of gun and shell components on the overall performance
of the Naval Gunfire Support system. The choice of the language MODSIM II was made to evaluate the capabilities
of an object-oriented, process-based simulation language. The model is an expansion of a similar model written in
FORTRAN and the problems and solutions encountered In moving from that linear programming language to an
object-oriented one are also documented. Additionally, the ease with which the simulation can be enhanced and
upgraded is addressed, as the facility to do this is greatly affected by the model's object-orientation. Finally, the
suitability of the use of a desktop computer, specifically an IBM PC compatible, as a platform for the development
and the execution of large simulations is explored.

20 DISTRIBUTION/AVAILABILTIY OF ABSTRACT 1.. REPORT SECURITY CLASSIFICATION
W UNCLASSIFIED/UNLIMITED E] SAME AS RPT.[]) DTIC Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Michael P. Bailey (408)646-2085 OR/Ba
DD Form 1473, JUN Previous editions are obelete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102-LF-014-6603 Unclassified

Approved for public release; distribution is unlimited.

NAVAL GUNFIRE SUPPORT:

AN EXPANDABLE, OBJECT-ORIENTED, PROCESS-BASED

SIMULATION

by

Richard L. Darden
Lieutenant, United States Navy

B.E.E., Georgia Institute of Technology, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

September 1991

Author:-
'Richd L. Darden

Approved by: Mi Thesis Advisor

Mil I.l ,Te i dio

Peter Purdue, Chairman,

Department of Operations Research

ii

ABSTRACT

This thesis documents the design and implementation of a simulation of Naval

Gunfire Support (NGFS) in a modem, object-oriented, process-based simulation

language called MODSIM II by CACI Corporation of La Jolla, CA. The main intent of

the simulation is to build a model that will allow the Naval Weapons Support Center, of

Crane, Indiana, to explore the effects of the individual component reliability of gun and

shell components on the overall performance of the Naval Gunfire Support system. The

choice of the language MODSIM II was made to evaluate the capabilities of an

object-oriented, process-based simulation language. The model is an expansion of a

similar model written in FORTRAN and the problems and solutions encountered in

moving from that linear programming language to an object-oriented one are also

documented. Additionally, the ease with which the simulation can be enhanced and

upgraded is addressed, as the facility to do this is greatly affected by the model's

object-orientation. Finally, the suitability of the use of a desktop computer, specifically

an IBM PC compatible, as a platform for the development and the execution of large

simulations is explored.
Accesion For

NTIS CRA&I
DTIC TABU. *ai. o.ccd [j

JUJ-ifCdt1Ofl

Dkt ibyItiofl/

fJimlabhity Co.,r-

Avail o;r

t-I
iii

TABLE OF CONTENTS

INTRODUCTION ... 1

A. THE USERS .. 3

B. NAVAL GUNFIRE SUPPORT .. 3

C. THE ENVIRONMENT ... 3

D. SCOPE ... 4

II. NAVAL GUNFIRE SUPPORT ... 6

A. A TYPICAL NGFS EVOLUTION ... 6

1. ASSIGNMENT OF TARGETS .. 6

2. REGISTRATION FIRE .. 7

3. SPOTTING .. 7

4. FIRE FOR EFFECT ... 10

5. RESOLUTION ... 10

B. MEASURES OF EFFECTIVENESS .. 10

C. ADDITIONAL CONSIDERATIONS ... 11

1. COMPONENT FAILURE ... 11

(a) Interruptive Failure .. 12

(b) Non-Interruptive Failure ... 12

(c) Reassignment of Target .. 13

2. SHIP MOVEMENT .. 13

3. SIMPLIFYING ASSUMPTIONS .. 13

(a) Bivariate Normal Error ... 13

(b) Serial Failures ... 14

iv

(c) M ovem ent ... 14

(d) D am age M odel ... 14

III. OBJECT-ORIENTED, PROCESSED-BASED SIMULATION 16

A. OBJECT-ORIENTED PROGRAMMING .. 16

1. DATA ENCAPSU LATION ... 17

2. INH ERITAN CE ... 17

3. POLY M ORPH ISM ... 18

B. A PROCESS-BASED SIMULATION .. 18

C. M OD SIM II .. 19

1. FEATURES .. 19

2. IMPLEMENTATION OF MODSIM II .. 20

(a) Object-orientation .. 21

(b) Sim ulation ... 21

IV . TH E eF SIM ULATION M ODEL .. 23

A . OVERV IEW .. 23

B. SIM ULATION EX ECUTION .. 23

C. SIM ULATION DESIG N ... 24

1. M ODU LES .. 24

(a) NG FS .. 24

(b) SIM CTRL .. 24

(c) H Q ... 25

(d) SH IP .. 26

(e) G UN .. 27

(f) TARG ET ... 29

(g) SH ELL ... 30

(h) SEED .. 30

v

(i) G LO BALS .. 31

(j) M IOM od .. 31

(k) MGrpMod ... 31

2. MODEL INPUT ... 31

3. MODEL OUTPUT ... 32

V. SIMULATION ANALYSIS ... 33

A. MODEL VERIFICATION .. 33

B. TERMINATION CONDITIONS .. 34

C. THE SIMULATION SCENARIO ... 34

D. THE BASE LINE SIMULATION RESULTS 35

E. ANALYSIS OF THE SIMULATION RESULTS 38

VI. PROBLEMS ENCOUNTERED .. 39

A. SWITCHING TO OBJECT-ORIENTED PROGRAMMING 39

B. TIMING AND STATE TRANSITION .. 39

C. MULTIPLE CONCURRENT PROCESSES 40

D. MODEL SIZE LIMITATIONS ... 41

VII. EXPANSION OF THE BASIC MODEL ... 43

A. PRIORITY OF TARGET ENGAGEMENTS 43

B. DAMAGE MODEL ... 44

C. RANDOM NUMBER SEEDS ... 44

VIII. CONCLUSIONS AND RECOMMENDATIONS 46

A. OBSERVATIONS .. 46

1. N G FS ... 46

2. OBJECT ORIENTED, PROCESS BASED SIMULATION 46

3. CONVERTING TO OBJECT-ORIENTED PROGRAMMING 46

4. LARGE SIMULATIONS AND THE PC 46

vi

5. MODSIM 1147...........................4

B. SUGGESTIONS FOR FURTHER RESEARCH 47

C. CONCLUSIONS .. 48

APPENDIX A NGFS SIMULATION PROGRAM.. 50

APPENDIX B SAMPLE NGFS INPUT FILES.. 125

LIST OF REFERENCES ... 147

BIBLIOGRAPHY ... 148

INITIAL DISTRIBUTION LIST... 149

vii

LIST OF FIGURES

Figure 1. Direct Spot... 8

Figure 2. Bracket Spot... 9

Figure 3. Base Line Test Scenario ... 35

Figure 4. Base Line Test Scenario Results .. 37

viii

ACKNOWLEDGEMENT

I would like to thank my lovely wife, Pamela, whose love, support, and

understanding allowed me to complete this thesis.

ix

I. INTRODUCTION

With the rapid advancement of technology, military weapon systems are becoming

increasingly complex. Moreover, the weapon systems made feasible by these

advancements in technology are extremely expensive. As the necessity for these

advanced technology weapon systems meets with a declining federal budget, the military

is faced with the challenge of finding a more cost effective means of designing and

implementing new weapon systems. System simulation is one way in which the military

might meet this challenge.

Simulation involves the use of computers to imitate the operations of the actual

system. Simulation can be used in the design of weapon systems to determine if the

systems will function as intended. Simulation can also be used in evaluation of weapon

systems after they are built. This type of simulation often provides a more cost effective

method of determining their optimum utilization as well as their effectiveness than actual

tests. As the rising cost of technology faces the reality of a shrinking budget, simulation

of military weapon systems will play an ever increasing role in the most efficient use of

the military dollar.

Presently, most simulations are designed to model only a specific aspect of a

system, such as the system's reliability performance. These simulations are written very

specifically for the problem and cannot be readily adapted to different problems or to

answer other questions that occur about the system being simulated or related systems.

As a result, to address the different problems or answer further questions, totally new

simulations must be developed that do not make much use of the effort or expense put

into the first simulation. However, the advent of object-oriented, process-based

simulation languages such as MODSIM II by CACI Corporation of La Jolla, California

[Ref. 1] promises to allow simulations that can be readily adapted to different problems

and to answer further questions. The computer code generated also portends to be

extremely reusable, thus allowing the effort and expense expended in generating code

used in one simulation to be used with little or no change in a related simulation. This

would greatly multiply the cost effectiveness of simulations and provide a high return on

the investment of the military dollar.

This thesis documents the construction of a simulation of Naval Gunfire Support

(NGFS) in MODSIM II. The model, called eF, seeks to simulate a Naval Gunfire

Support Mission with various scenarios and different parameters to produce the time

integral target value, the average mission completion time, and the average rate of fire

for the guns involved as measures of effectiveness (MOEs). The choice of MODSIM II

was made to evaluate the upgrade capabilities of an advanced object-oriented,

process-based simulation language. The model is an outgrowth of a similar model

written in the computer language FORTRAN by Michael P. Bailey, Marcelo Bartroli,

Alexander Callahan, and Keebom Kang of the Naval Postgraduate School Faculty

[Ref. 2]. This model of NGFS was developed for the Naval Weapons Support Center

(NWSC), Crane, Indiana, to investigate the reliability of the individual components of

the systems that make up Naval Gunfire Support. It is desirable to build a simulation that

provides a foundation that not only can be used to study reliability, but also can be built

upon or modified to study such varied topics as training effectiveness of naval gun crews

or the most effective assignment of targets to ships.

This effort also addresses some of the problems encountered in moving from a

discrete-event type of simulation in a non-object-oriented language to an object-oriented,

process-based simulation. Finally, the ease at which the base simulation can be enhanced

and expanded. owing to its object-oriented nature, will be explored.

2

A. THE USERS

The users of eF are specifically the personnel of the Naval Weapons Support

Center of Crane, Indiana, which will use it to further their in-depth study of the reliability

of major caliber naval ammunition and the effects of individual component reliability on

overall NGFS system performance. This thesis will also be of general use to anyone

who has struggled with expanding and maintaining discrete-event simulation or a

simulation that has been wfitten in a non-object-oriented programming language, by

providing an example of what can be done given the tools generally available today and

some of the benefits and pitfalls of so doing.

B. NAVAL GUNFIRE SUPPORT

The simulation presented in this thesis is one that simulates Naval Gunfire Support.

A very brief definition of Naval Gunfire Support refers to guns on ships firing at targets

in support of military operations. A more detailed description of Naval Gunfire Support

follows in the next chapter.

C. THE ENVIRONMENT

The simulation program presented will run on an IBM compatible personal

computer under DOS with both a hard disk and a floppy disk. For speed considerations,

a fast (20MHZ+) 80386 computer is recommended along with a math coprocessor.

However, neither the 80386 nor the math coprocessor is required to run the simulation.

The simulation itself is written in MODSIM II, which is an advanced simulation

programming language. The modification and compilation of the program requires the

MODSIM II language and at least an IBM AT compatible (286+) computer with 4

megabytes of memory and a hard disk drive. In addition, the MODSIM II compiler

requires either a Turbo C or Turbo C++ compiler by Borland International, Incorporated

3

of Scotts Valley, California [Ref. 31 since it compiles to the computer language 'C' which

then is compiled by the 'C' language compiler to the native format of the personal

computer. As stated in the conclusions, this configuration represents the minimum

required to run the simulation. A larger model would require upgrading the system

requirements to a personal computer running OS2 or a computer workstation.

D. SCOPE

The simulation described does not propose to be the definitive NGFS simulation

program. Rather, the simulation is a general baseline simulation of Naval Gunfire

Support that can be used as is to answer questions concerning the reliability of individual

component parts and their effects on NGFS system performance. The impact of the

object-oriented, process-based simulation programming language, MODSIM II, on the

reliability, maintainability, expandability, and reusability of large simulations will be

explored. Finally, some of the problems associated with moving from a discrete-event

simulation in an older generation programming language to a process-based simulation in

an object-oriented programming language will be discussed.

A word of caution is needed at this point to state that the simulation presented here

is not a general purpose simulation. There is a danger inherent in general purpose

simulations that was well stated by CAPT Wayne Hughes, noted author of Fleet Tactics,

that is "General purpose models generally fail." [Ref. 4] This is because they attempt to

do everything and succeed at nothing. A simulation should always be designed to

address a specific problem. This design can build upon an existing simulation or reuse

much of the existing simulation's code, but the existing simulation should not be used as

is to answer questions for which it was not intended, without careful examination. This

is because the assumptions, simplifications, and data used in the original simulation may

not be applicable to the new simulation and may invalidate the results. The wheel should

4

not be reinvented each time it is needed, but it should be checked first to see that it fits

the car on which it is to be used.

5

II. NAVAL GUNFIRE SUPPORT

Naval Gunfire Support is the use of major caliber naval guns against targets in

support of military operations. An example of this would be a pre-assault bombardment

of shore fortifications before an amphibious landing by Marines. Essential questions that

need to be answered concerning NGFS are: How long does it take to destroy a given set

of targets? What are the firing rates of the guns? How does component reliability of the

gun and the shell affect the time required to destroy the target and the firing rate of the

gun? What is the specific area that can be addressed by training that will yield the most

significant improvement in NGFS? What is the best mix of shells and ships to destroy a

target in the least amount of time? What is the most effective way to assign targets to

ships to guns? These types of questions need to be addressed by a NGFS model. It is

not the goal of this research to provide answers to all these questions, but rather to

provide a basic simulation of NGFS that can be expanded and built upon to provide the

answers to these types of questions and will directly answer the question of component

reliability on the time necessary to destroy a target and the firing rate of the gun.

A. A TYPICAL NGFS EVOLUTION

A typical Naval Gunfire Support mission can be broken down into five basic parts:

Assignment of Targets, Registration Fire, Spotting Fire, Fire For Effect, and Resolution.

Each of these processes will be discussed below.

1. ASSIGNMENT OF TARGETS

The mission would commence with the order from the overall commander to

the fleet commander to destroy the defensive installation. The fleet commander would

6

examine his assets and make the determination of which ships would attack which

specific targets. A message would then be sent to the ship, tasking it with destroying the

specific target(s).

2. REGISTRATION FIRE

The ship would receive the NGFS tasking order and then commence a

registration fire of its weapons. This registration fire is an attempt by the ship to correct

for the navigation system errors as well as the gun-system bias errors inherent in the ship.

Several registration rounds are fired at an object outside the target area. These rounds

are tracked to their landing point using the ship's radar. The data is then averaged and

used as a bias to correct future firings. Registration fire is usually done once per day per

ship. If the ship has more than one gun, only the lead gun (if available) completes a

registration fire and the bias calculated is used for all subsequent firings by all guns

aboard that ship.

3. SPOTTING

Once the registration fire is complete, the ship commences to spot the target.

This consists of firing one shot at a time until the fall of the shot is zeroed in on the

target. This is done so that once the gun is properly aimed it can commence to Fire For

Effect (FFE) on the target at its maximum rate of fire without having to worry about the

fall of the shot.

The basic process of spotting is that the fall of the shot is observed by a

spotter who calculates a correction and communicates the correction back to the ship.

The spotter can be either an observer on shore who can see the target, an observer

offshore who can see the target, or a remotely piloted drone that can observe the target.

The frame of reference for the observation is that the x direction always lies across the

line of sight from the gun to the target and the y direction always lies in the line of sight

from the gun to the target.

7

Once the spotter has communicated the correction back to the ship, the ship

makes the necessary changes in bearing and azimuth to the gun and refires a spotting

round. This continues until the spotting round meets the spotting criteria. The spotting

criteria differs based on two types of spotting.

The first type of spotting is a Direct Spot. This is when the gun is aimed

directly at the target. The successful completion criteria is that the shell falls within a

certain radius, ECR, of the target (See Figure 1). ECR is the estimated circular radius of

the target and is derived from data in the Joint Munitions Effectiveness Manuals

(JMEMS).

X <1- Unsuccessful Spot

*-Successful

Figure 1. Direct Spot

The second type of spotting is a Bracket Spot. This type of spot fire seeks to

improve the accuracy of the final aimpoint by bracketing the target with shells and taking

the average of the two aimpoints used to achieve the bracket. The gun is initially aimed

at the center of a long bracket box that is centered around a point that lies a distance

ECR*ECRLong beyond the target (See Figure 2). ECRLong is a measure of the

distance by which the bracket boxes are offset from the center of the target. It is a

8

dimensionless quantity that is multiplied by ECR to get the actual distance. The long

bracket spot is successful when a shell is placed within the long bracket box, which has

dimensions of ECR*BoxLong long and ECR*BoxWide wide. BoxLong and BoxWide

are dimensionless qualities, like ECRLong, that are multiplied by ECR to get the actual

length and width of the bracket box. Once the long bracket spot fire has been successful,

the process is repeated for the short bracket. The center of the short box is a distance

ECR*ECRLong short of the target with the same dimensions as the long bracket box.

Once a shell has been successfully placed in the short bracket box, the two aimpoints

used to achieve the successful long and short bracket spots are averaged. This average

aimpoint is used as the aimpoint for the fire for effect.

ECR*BoxWide

LongAimpoint- -w X

X
------------------------- -- ---- -------- ----- ~ -

c
w -J

(.)
W

Actual Target Aimpoint--wX
U

TARGET ----- --

Cc

ShortAimpoint -4.O-X

----------------------------- -...--..... 0

w

ECRBoxWide

Figure 2. Bracket Spot

9

4. FIRE FOR EFFECT

Once the aimpoint for the gun has been established by spotting, firing for

effect commences. Firing for effect consists of firing a set number, RndsPerFFE, of the

appropriate type of shell (High Explosive, Armor Piercing, Submunition, etc.) at the

target at the maximum rate of fire of the gun. Once the fire for effect is complete, the

spotter performs a battle damage assessment of the target.

5. RESOLUTION

In the resolution phase, the ship receives the results of the FEE from the

spotter and acts on them. If the target is destroyed, the ship communicates this to the

headquarters and another target is assigned to the ship if an unassigned target is still

available. If the target was damaged but not destroyed by the FFE, another FFE is

commenced on the target using the same aimpoint. If the target was not damaged by any

FFE round (ie. it was missed), a new round of spotting occurs on the target to establish a

new aimpoint for a subsequent FFE. This process of spotting followed by fire for effects

is continued until the target is destroyed.

B. MEASURES OF EFFECTIVENESS

The primary MOE that will be used to evaluate the NGFS system will be the time

integral target value. This is the integral over time, of a target's LifePoints, summed

over all targets. A target's LifePoints are a measure of its ability to sustain damage and

still operate and are initially set to some fixed value depending on the type of target.

They are adjusted downward according to the amount of damage a target receives. A

LifePoints value of zero would correspond to a target that has been destroyed. This

MOE is used because it gives a better measure of the rate at which targets are damaged

than just the time required to destroy all the targets. The smaller the time integral target

10

value the faster the targets are damaged and ultimately destroyed. The problem with this

MOE is that it has no ready physical interpretation.

The solution to this is to also provide the secondary MOE's of the mission time and

the firing rates of the guns. The mission time is the time required to destroy all the

targets. The firing rate of each gun is the average firing rate of that gun over the time

that there exists a target for that gun to fire at. These MOEs have the obvious physical

interpretations and serve as a check on, and to enhance the interpretation of, the primary

MOE of time integral target value. These MOEs just do not provide as much

information as the primary MOE.

The use of these MOEs will allow the determination of the minimum required

reliability levels of round and gun components to achieve a given effectiveness against

the target. This was the original purpose for the FORTRAN based simulation of

NGFS [Ref. 2].

C. ADDITIONAL CONSIDERATIONS

In addition to the basic NGFS scenario described, there are some other factors that

affect the performance of the guns; the main factor, and the one with which NWSC is

concerned, is component failure. Ship movement while firing also affects the rate of fire

and will be considered.

1. COMPONENT FAILURE

Each of the mechanical components involved in a Naval Gunfire Support

mission has associated with it a certain degree of reliability. A shell, for example,

consists of fuses, primers, propellant, projectile, and explosive. All of these components

of the shell and more components of the gun can fail and prevent the shell from landing

on target, detonating, and causing damage to the target. Fortunately, the components

basically operate in a serial chain. There is an electrical signal to fire that is amplified

11

and sent to the primer. The primer ignites and causes the propellant to bum. The

propellant bums and the hot gases produced push the shell out of the barrel. The shell

then flies on a ballistic trajectory to the target. When the shell arrives at the target, the

fuse arms the shell and starts a sequence of ever increasing explosive charges that results

in the detonation of the shell. (see Weapon Systems Fundamentals, NAVORD OP 3000

VOLUME 2, First Revision, for details.) As will be seen, the serial nature of this chain

greatly affects the failure analysis of the system.

Since the system is serial in nature, the failure of a component in the first part

of the chain will prevent a failure in any components further down the chain. For

example, if the primer fails, the propellant will not ignite, the shell will not be ejected

from the gun, the shell will not fly to the target, and the fuse will not arm the shell and

cause detonation of the explosive. When a failure occurs anywhere in the chain, a round

is deemed to be non-effective and will not cause damage to a target. When a failure does

occur, it will be either an interruptive failure or a non-interruptive failure, based on its

impact on subsequent firings.

(a) Interruptive Failure

An interruptive failure is a failure that causes the gun to stop firing for

a certain amount of time. An example of this type of failure would be a failure of a

propellant charge. Since the propellant did not ignite, the shell is still in the barrel of the

gun in some unknown state and must be cleared before firing can resume. This takes a

set amount of time to be done correctly. This interrupts the firing process and is

therefore considered an interruptive failure.

(b) Non-Interruptive Failure

A non-interruptive failure is a type that occurs if the shell successfully

leaves the gun but fails to cause damage to the target. Examples of a non-interruptive

failure include failure of the fuse, failure of the explosive, guidance errors, and reduced

12

initial velocity. The key factor in all these types of failures is that there is no impact on

subsequent gun firings. In other words, they are non-interruptive and the gun can fire its

next shot with no delay.

(c) Reassignment of Target

In addition to the two types of failures, there is a further classification

of interruptive failures. This classification depends on the length of time that the gun

will be out of action. If it is out of action for a time that exceeds a certain value,

TooLong, the target is reassigned to another gun on that ship, if one is available, or

released back to headquarters to be reassigned if an idle gun is not available on that ship.

2. SHIP MOVEMENT

Ship movement affects the firing rate of the gun in that the distance the ship

(gun) is from the target affects the flying time of the shell. Also, during the time when a

ship is maneuvering, the guns cannot be fired accurately, so fire is suspended during the

maneuver. As a result, the firing rate is less than with a stationary ship. Since this has a

direct impact on the firing rate of the guns and the target destruction times, the

movement of ships will be considered.

3. SIMPLIFYING ASSUMPTIONS

There were several key assumptions made in the design of the model to

simplify its construction. The key assumptions were bivariate normality, serial failures

and movement assumptions.

(a) Bivariate Normal Error

All accuracy errors in the system are assumed to be bivariate normal.

This applies to the navigation system accuracy of the ship, to the aimpoint accuracy of

the gun, and the actual fall of the shot.

13

(b) Serial Failures

All failures of the gun and shell will be considered to be serial failures.

That is a failure of a component that will prevent any failure of a component further

down the line from occurring.

(c) Movement

Normal movement of a ship will be on a straight course at a set speed.

Changes from the base course and speed will be by maneuvers that will occur according

to an input track. Firing will not occur during a maneuver. A request for a maneuver

will only be postponed for one complete round of an FFE. A request for a maneuver will

interrupt any other event and cause it to recommence once the maneuver is complete.

The result of the maneuver will be to reposition the ship offset by advance and transfer

on a new course and speed at a new time equal to the time at the start of the maneuver

plus the duration time of maneuver.

(d) Damage Model

The amount of damage a target sustains due to the impact of a shell is

dependent on several factors, such as the type and size of the shell, the miss distance, and

the type and size of the target. It was desired to incorporate a damage model that would

take into account all these factors in assessing the damage a target sustains. In order to

do so, the following variables are defined. Each target is assigned a positive real value,

LifePoints, as a measure of its ability to sustain damage and still operate. The higher the

LifePoints, the more damage a target can sustain. A target's LifePoints is initially set to

a positive value and is decreased by the damage a target sustains. When a target's

LifePoints reach zero the target is assumed to be destroyed. Each type of shell has an

associated damage factor, DF, for a particular target. The DFs are [0.0, 1.0] real

variables that are maintained by the target and represent a measure of the target's

14

susceptibility to damage from a particular type of shell. The ECR, or estimated circular

radius, is a positive real variable that is a measure of the size of a target.

Each shell has Type associated with it. The types are user definable

and standard types would include high explosive (HE), fragmenting (FRAG), armor

piercing (AP), and submunitions (SUB). MaxDamage is a positive real variable that is a

measure of the shell's destructive power. EDR, estimated damage radius, is positive real

variable that is a measure of the effective killing radius of the shell.

Given these variable definitions, the formula for calculating the

damage a particular target sustains due to the impact of a particular shell is the following:

Damage =M DamageRadius - MissDistance) 2
Damge Ma~amge*F* DamageRadius

where

DamageRadius = ECR + EDR

MissDistance = The distance the shell riisses the center of the target by.

DF = Damage factor for this type of shell for this particular target.

Damage = 0.0 if MissDistance > DamageRadius

This formula gives sufficient latitude to account for the major variables

in predicting target damage. However, the formula has not been validated and will

presently only give relative results based on estimates for the parameter values. The

model would have to be validated, then calibrated, using actual data, before the results

would have any true physical significance in terms of the amount of damage a target

sustains.

15

Il1. OBJECT-ORIENTED, PROCESSED-BASED SIMULATION

Since a goal of this research is to explore the impact of object-oriented,

process-based simulation on current simulations, it is necessary to introduce some of the

basic concepts associated with each of these ideas. Also, since MODSIM II is the

language in which eF is written, its particular implementations of the basic concepts of

object-oriented, process-based simulation will be covered.

A. OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) is an old programming concept that has seen

a resurgence of popularity through the release of modem OOP languages [Ref. 5]. The

resurgence in popularity stems from the promise of object-oriented languages to allow

the writing of code that is more reliable, expandable and reusable than code written in

other types of programming languages. The fundamental concept of OOP is that the

code is structured around objects and interactions between those objects much like in the

real world. The objects can either be abstract objects or correspond to actual physical

objects. The objects have data (fields) and procedures (methods) that act upon their data.

They communicate with other objects by way of sending messages to them. In addition,

all OOP languages have the characteristics of being strongly typed and block structured,

much like Pascal or C. Since these concepts are common among current high level

programming languages, they will not be addressed. Instead, the concepts of data

encapsulation, inheritance, and polymorphism that distinguish OOP will be explored.

16

1. DATA ENCAPSULATION

Data encapsulation is the concept by which an object maintains its own data

in an orderly and structured fashion and allows only selective access to its data by any

object other than itself. Data encapsulation can also be called data hiding since any

attempt to access an object's data except through specifically declared methods is not

allowed.

Data encapsulation promotes the expandability of a program since the

interface to the data is fixed outside of an object. This means that if something is

changed inside of an object, it has no effect on the routines calling the object as long as

the object's method of calling does not change.

2. INHERITANCE

To understand the concept of inheritance, it is necessary to understand the

concept of classes, subclasses and instances. "...a class is a set of closely related objects

sharing similar attributes." [Ref. 6:p. 5] A subclass is a class that has all the

characteristics of its parent class and can add new characteristics of its own. An instance

is a particular realization of a member of a class.

An example of a class would be moving vehicles. A subclass of moving

vehicles could be automobiles. An instance of an automobile class would be a Ford

Taurus. An example of inheritance is that an automobile derives some of its attributes

from the moving vehicle class. In other words it has a name, a current position, speed

and direction and can be told to go, stop and turn. To these attributes it adds a

manufacturer, four wheels, a type, a steering wheel and the ability to start the engine,

stop the engine, open door, etc. The Ford Taurus is an instance of an automobile that

fills in the name attribute inherited from the moving vehicle class with Taurus. It fills

the manufacturer field with Ford. It also knows what to do to when told to go, stop and

turn since it inherited those methods from the moving vehicle class.

17

Inheritance promotes reusability since code is reused (inherited) from a class

to a subclass. It also allows for a change to be effected in just the parent class and

inherited downward to all subclasses. This greatly simplifies the programming process.

3. POLYMORPHISM

Polymorphism is the concept of overloading of operator names. This

concept allows the same operator (method name) to be implemented differently among

different objects. In eF for example, both a ship object and a gun object can be told to

EngageTarget and be passed a target to engage. How the two objects respond to the

operator is completely different. The ship determines an idle gun and tells it to

Engage Target; the gun actually starts the process by which it will spot the target and fire

for effect on the target until the target is destroyed.

Polymorphism enhances the structured aspect of the code as well as reducing

its bulkiness as it allows programmers to tell an object to do something like telling a

moving object to go without having to worry about whether the object walks, swims, or

flies.

B. A PROCESS-BASED SIMULATION

A process-based simulation is a simulation environment that allows for time to pass

in an event, or method. This is compared to a discrete-event simulation in which time

can only pass between events. George S. Fishman describes process-based simulation, or

as he calls it process interaction approach, in the following manner:

...the process interaction approach provides a process for each entity in a
system. Each temporary entity moves through the system and consequently
through time. Occasionally, a temporary entity encounters an impediment to
progress and must wait. [Ref. 7:p. 139]

The main benefit of process-based simulation is that it allows simplifications in

larger models where it is hard to follow the flow of logic that defines the behavior of an

18

object. Furthermore, multiple, concurrent processes can be occurring for the same class

of object or even the same object. Finally, processes can interact with each other and

cause each others' behavior to change. All these features of a process-based simulation

come in addition to the normal features of a discrete-event simulation as time does not

have to pass in a method, or event, and can pass between methods, or

events. [Ref. 8:p. 137]

The major disadvantage of process-based simulation as compared to discrete-event

simulation is also pointed out by Fishman and is that in a process-based simulation there

is less program control [Ref. 7:pp. 138-139]. This can lead to problems in timing and

state transition, as can be seen in Chapter VI, but with careful attention to the program

design, the advantages of process-based simulation far outweigh the disadvantages.

C. MODSIM II

MODSIM II is an object-oriented programming language that is modular, block

structured, and provides support for discrete-event simulation. It is loosely based on the

language Modula-2. It was designed to bring the best features of contemporary

programming languages to bear on real world simulation problems. The following are

some of the features and particular implementations found in MODSIM H as described in

the reference manual for MODSIM II [Ref 8].

1. FEATURES

One of the key features of MODSIM II is its portability. The MODSIM code

is compiled to C code which is then compiled by the machine's native C code compiler to

an executable file to run on that machine. The result is that the MODSIM code can be

transferred from a PC to a workstation, recompiled, and run with no changes to the

MODSIM code. This is a very valuable feature which allows initial model development

19

work to be done on a PC and later, when the model grows too big to be run on the PC, it

can be transferred to a workstation or mainframe with no effort lost.

MODSIM II is modular. Different parts of a program can exist in separate

files that can be edited and compiled separately. A single module can also be shared by

multiple programs. This facilitates the reuse of code.

MODSIM II is strongly typed. All expressions and assignments are checked

by the compiler for consistency. This eliminates cross type assignment errors that can

be difficult to track down. It also allows for user defined data types, which makes for a

much simpler, readable program.

MODSIM II is block-structured. A block is made up of definitions and

executable statements. Blocks can be nested. They also limit the scope of declarations

to be contained inside the blocks.

MODSIM II is object-oriented. It contains all the key features of OOP: data

encapsulation, inheritance, and polymorphism. The implementation of these features is

straight forward and greatly enhances the utility of the langaage.

MODSIM II is simulation capable. The simulation capabilities are provided

through the use of library modules. These library modules implement all the necessary

bookkeeping procedures to allow discrete-event simulation. In addition, MODSIM II

allows for process methods to be used which can elapse simulation time (process-based

simulation).

2. IMPLEMENTATION OF MODSIM I

The implementation of MODSIM II is fairly straight forward and anyone

familiar with a modem modular, block-structured, strongly typed language such as

Pascal or ADA should have very little trouble understanding MODSIM H code. For that

reason, those features of MODSIM II will not be further discussed. The implementation

of the object-oriented features of MODSIM II are similarly straight forward. However,

20

due to the relative newness of OOP, these features will be further discussed along with

the implementation of simulation in MODSIM iI.

(a) Object-orientation

An object in MODSIM II is defined as having data, referred to as

fields, and procedures, referred to as methods. The fields can either be public, in which

they can be accessed by other objects for read only, or private, in which they cannot be

accessed by any other object. In any case, the fields of an object can only be modified by

the object's own methods. There are two types of methods that an object can have: an

ASK method and a TELL method. An ASK method is similar to a procedure found in

other languages and can have both input and output arguments. It also cannot elapse

simulation time. A TELL method can only have input arguments and can elapse

simulation time. The invocation of both these types of methods is in the format of:

ASK (TELL) object TO method name IN time duration

The IN time duration clause is optional and allows for direct discrete-event simulation

modeling.

Objects can inherit both fields and methods from other types of objects.

An object can also override an inherited method and substitute its own implementation of

that method in place of the inherited implementation.

(b) Simulation

The simulation capabilities of MODSIM II are built into a module

called SimMod. They consist of a StartSimulation procedure that starts a simulation,

SimTimeO, that returns the current value of simulation time, and some other procedures

that allow synchronization of events through trigger objects and interruption of time

elapsing processes.

The key method by which an object interfaces with the simulation

module is through the use of a WAIT statement. A WAIT statement elapses simulation

21

time in a TELL method. The wait can be for a certain length of time

(WAIT DURATION) or for an object to complete an action (WAIT FOR object

TO (TELL method)). The key point is that only TELL methods can contain WAIT

statements. In addition each WAIT construct has an optional ON INTERRUPT clause

which is executed when the particular process of an object instance is interrupted. This

allows a process that is dormant in a wait condition to be awakened before the

completion of the WAIT condition.

22

IV. THE eF SIMULATION MODEL

The eF model is a basic simulation of NGFS tailored to answer specific questions

about gun performance, as measured by the time integral target value, firing rate, or time

to destroy targets, as a function of the reliability of gun and shell components. It is

written in MODSIM 11 and designed to provide a foundation which can be expanded and

reused to answer further questions about NGFS.

A. OVERVIEW

The simulation program consists of 19 MODSIM II modules consisting of one

main module and nine paired definition and implementation modules. The main module

is the name of the executable file and is called NGFS. The file naming convention used

by MODSIM is that all MODSIM files will end in .MOD and be prefixed by an "M" if it

is the main module, a "D" if it is a definition module, and an "I" if it is an

implementation module. A main module contains the main program and is the name of

the executable file created. A definition module contains type and variable definitions

that can be exported to other modules. An implementation module contains the actual

code to implement the definition module. Each module is described in detail later on in

this chapter.

B. SIMULATION EXECUTION

Execution of the simulation is straightforward. The user uses an ASCII text editor

to set up the input files, SIMPARM.DAT and ACTUALSCN. SIMPARM.DAT contains

the simulation parameters required for the simulation. ACTUALSCN contains the

23

scenario file used to build the simulation experiment. Next he runs the program by

typing NGFS. The program echoes all its inputs to a file called INPUT.LOG. The

results are presented in a file called NGFS.OUT.

C. SIMULATION DESIGN

The design of the simulation is based on objects that correspond to their real world

counterparts. There is a HQ object that corresponds to a NGFS headquarters, a Ship

class object from which ships are built, a Gun class object, a Target class object and a

Shell class object. Each of these objects is implemented as a separate module,

consisting of a definition module and implementation module pair. These modules and

the utility modules SIMCTR4 GLOBALS, SEED, MIOMod, and MGrpMod are

described next.

1. MODULES

(a) NGFS

The NGFS main program module is contained in the file

MNGFS.MOD. It is a very simple main program that only outputs the date and the time

and calls the RunSimulation procedure contained in SIMCTRL module.

(b) SIMCTRL

This module is contained in the files DSIMCTRL.MOD and

ISIMCTRLMOD. It consists of only one procedure, called RunSimulation. This

procedure is designed to execute the simulation and will eventually be called from a

larger eF control program to do just that. The basic flow of the simulation is that the

procedure creates a new HQ object and tells it to CreateScenario. It then enters a loop

consisting of telling the HQ to InitializeScenario and RegisterAlIShips, followed by

StartSimulation. When the mission is complete, HQ is told to CalculateRunStats.

CalculateRunStats returns the boolean variable, SimDone, which is true when the

24

simulation meets the stopping criteria. This loop is repeated until SimDone is true. HQ

is then told to ReportStats and the procedure terminates.

(c) HQ

The HQ module consists of the files DHQ.MOD and IHQ.MOD. It

defines the HQObj (headquarters object) type and supporting constructs. The

headquarters object acts as the controlling object for the simulation. It maintains as its

fields the global MOE values. It also maintains the current simulation stopping method

and associated values. It maintains a ranked queue of targets and an unranked queue of

ships. A ranked queue is a collection of references to objects maintained in rank order

based upon some arbitrary ranking order. This facility is provided by MODSIM II as a

RankedObj. An unranked queue is the same as a ranked queue but is maintained in first

in, last out order, and is provided by MODSIM II as a QueueObj.

The HQ object first sets up the simulation when it is told to

CreateScenario. It does this by reading in the initial simulation parameter data from the

file SimParm.DAT. It then creates the scenario by reading in the data from the

ActuaLSCN scenario file. Based on the input data, the HQ object creates the ships and

targets needed for the scenario.

Next, for each repetition, it is told to InitializeScenario in which it

resets the scenario to run another repetition. This is followed by being told to

RegisterAllShips. This method tells all the ships in the scenario to RegistrationFire.

The RunSimulation procedure then starts the repetition by issuing the StartSimulation

command. When the repetition is complete, the HQ object calculates the statistics for

that repetition when told to CalculateRunStats. It also returns whether or not the

simulation is complete as the boolean variable SimDone. When the simulation is

complete, the HQ object reports the final statistics when told to ReportStats.

25

When a repetition is running, the HQ object is kept informed of the

progress of the simulation run by the methods, UpdateTargetValue and Assign Targets.

UpdateTargetValue is a method that calculates the new total target value for all targets

and allows this value to be integrated over time into the time integral target value.

Assign Targets is a TELL method used to tell the HQ object to go

down the list of targets and assign any target that is not destroyed and not presently

assigned to the next ship that has a gun available. This method is called by a ship when

its engagement status changes or when it has completed its registration fire. It is also

called by a ship when a gun failure forces the ship to release the target.

(d) SHIP

The ship module consists of the files DShip.MOD and IShip.MOD.

These modules define and implement a ShipObj and related types. A ShipObj is an

object that simulates a ship in the NGFS scenario. It is a subclass of an IDObj which is

defined in the module GLOBALS. It consists of three basic groups of methods. The first

creates and initializes the Ship object. The second group handles the maneuvering of the

Ship object. The final group handles the engagement of targets by the Ship object. It

also contains many fields that allow it to keep track of its status. It maintains a list of its

guns in the queue, GunList.

The ShipObj is created by the HQ object which immediately asks it to

CreateShip and passes it the ship type, ID, and initial course, speed, position, and track.

The ship in turn initializes its fields based on the type of ship it is by reading the

appropriate ship data file (*.SHP). The ShipObj in turn creates gun objects that will

simulate its guns. It also sets up its initial course, speed, and position and reads in the

track the ship is to follow from the maneuver data file (*.MAN). The ShipObj is

initialized prior to each simulation run by the method InitializeShip.

26

The method UpdatePosition updates the position of the ship based on

its present course and speed from the last position. The methods Maneuver and

RecManvGranted are used to maneuver the ship. The initial instance of the Maneuver

method is scheduled by InitializeShip. Subsequently, the maneuver method requests a

maneuver from all the ships guns at the appropriate time. When all the guns report that

they are ready for a maneuver by calling the ship's RecManvGranted method, a

maneuver occurs. Simulation time is allowed to advance for a time equal to the duration

time (DTime) of the maneuver. Then the ship's position is then offset by the maneuver

advance and transfer. The ship then releases its maneuver request by telling all its guns

to CancelManeuver. It then schedules the next maneuver in by telling itself to

Maneuver and passing itself the pointer to the next maneuver record. The method

HaltManeuvers is called by the HQ object to stop the ship from maneuvering once the

mission is completed.

The ship is initially told to RegistrationFire. This causes the ship to

choose its first available gun and tell it to RegistrationFire. When the gun completes its

registration, it returns the results to the ship by telling the ship to ReceiveRegStatus. If

the registration was successful, the ship tells itself to UpdateEngagementStatus which

updates the ship's EngagementStatus field and tells the HQ object to Assign Targets if

the ReAssignTargets argument was true. If the RegistrationFire was unsuccessful, the

ship tells itself to RegistrationFire again. If no guns are available during an attempt to

RegistrationFire, the ship waits until a gun is repaired then tries again. A ship is told to

Engage Target and passed a target to engage by HQ object or on occasions by itself. In

response, the ship tells the next available gun to EngageTarget.

(e) GUN

The gun module consists of the files DGUN.MOD and IGUN.MOD.

This is the most complex module. It defines a GunObj and supporting types. A GunObj

27

corresponds to a gun onboard a ship and the associated fire control and communications

facilities. A GunObj is also a subclass of IDObj and is created by a ShipObj. The

ShipObj then tells it to CreateGun and passes it the type of gun it is to be. The GunObj

then reads the *.GUN file for the type of gun. The *.GUN file contains the information

defining the characteristics of the particular type of gun. One of the characteristics is the

type of shells available to that gun. To save having redundant information, only one

copy of each type of ShellObj is created for the entire scenario, no matter how many

guns use that type of shell. The original types of ShelObj are kept in the queue,

ShellList, defined in the module GLOBALS. References to these ShellObf s are kept in

the Magazine for each gun. This is a linked list of type MagazineTYPE that contains the

type of shell, the pointer to the original copy of the shell in the ShellList, and a pointer to

the next magazine record. Once the GunObj has been created, it is initialized before

each repetition by calling InitializeGun.

The GunObj has many fields that allow its status to be tracked. Some

of the main ones are its Status and Process fields, that act in the same manner as the

fields of the same names for the ShipObj. HOT is a boolean variable that is set to true

when the gun has fired more than ShotsBeforeHot rounds during a single simulation.

When HOT is set, all repair times are taken to be their MTTRH, or mean time to

repair-hot, values vice their MTTRC, or mean time to repair-cold, values.

The gun responds to a RequestManeuver from its ship by granting

ClearedToManeuver and telling the ship to RecManvGranted when the gun is a a

stopping point in its operation. CancelManeuver causes the gun to resume the process it

was doing when the maneuver was requested.

A gun can be told to RegistrationFire. This causes the gun to fire

NumRegRounds worth of rounds at a simulated reference target, located RegRange

away. The shell is told to FlyToTarget as normal, but in this case the target is a

28

NILOBJ and the shell tells the ship to TrackRound when it has finished its flight. This

causes the ship to notice where the shell lands. When all the registration rounds have

been fired, the ship calculates its Bias which is the correction for internal navigation and

gun systems errors based on the average of the registration rounds.

When told to EngageTarget, the gun checks to see what kind of

spetang regime the target requires, then tells itself to SpotTarget. This causes the gun to

Fire at the target until the spotting criteria is met. The Fire method is a general purpose

method used by higher level routines to simulate the actual firing of the gun at the

designated target. It also handles gun and shell failures. A gun or shell component can

fail in three ways: a Misfire (the filing cycle of the gun is unaffected), a BrokeSoft (the

firing cycle is interrupted for a time less than TooLong and does not result in the release

of the target), or a BrokeHard (the firing cycle is interrupted for a long enough time to

cause the target to be reassigned to another gun on the same ship, if one is available, or to

another ship).

Once the target is successfully spotted, the target begins its FFE. At

the completion of the FFE, the target reports its status to the gun and the gun will either

fire another round of FFE at the target, respot the target, or ask for another target since

its present one is destroyed.

(f) TARGET

The Target module is contained in the files DTARGET.MOD and

ITARGET.MOD. It implements a TargetObj and supporting types. The target is created

by the HQ object. It is immediately told to Create Target and passed its creation

parameters. The target object then reads the rest of its parameters in from the *.TGT file

associated with the type of target. This object is also initialized before every run by

calling the Initialize Target method. The target can be told to StandbyForSpot or

StandbyForFFE. These methods alert it to an incoming shell and tell it how to evaluate

29

the impact. The method ImpactRound is used to explode the shell and calculate any

damage done to the target. The gun object then waits for the round to impact then

requests the target to ReportSpolResult or ReporIBDA. The target responds to these

request by informing the gun of the appropriate information.

(g) SHELL

The Shell module consists of the files DSHELLMOD and

ISHELL.MOD. These files implement the object ShellObj, and the procedure

RangeFunction. The shell object implements the shell in the NGFS scenario. It is

created once per scenario by the first gun to use that type of shell. The gun then tells the

shell to CreateShell and the shell reads its parameters from the appropriate *.SHL file.

The shell is then placed in the global varikble, ShellList. When a gun needs to fire a

shell, it first clones the appropriate type then tells it to FlyToTarget and gives it a target

to which to fly. The shell delays the appropriate flight time and then tells the target to

ImpactRound.

This module also contains the procedure RangeFunction that allows

the variance of the aimpoint of the gun and the impact point of the shell to be a function

of range. The formula used is: a(r) = O*r*RangeFactor. A value of minus one for the

RangeFactor is used as a flag and will result in cr(r) = a.

(h) SEED

This module consists of the files DSEED.MOD and ISEED.MOD.

These files define a MRandObj, a SeederObj, and a seeder. The MRandObj object is a

modification to the basic RandObj that adds a method called GetSeed. This method gets

the next random number seed from the appropriate list in the seeder. The SeederObj is

an object type for the object instance, seeder, also defined in this module. The seeder is

an object that reads in several lists of random number seed strings from the file

30

NGFSSEED.DAT. It then returns the next seed available in the specified seed string in

response to a GetNextSeed call.

(i) GLOBALS

The module GLOBALS is contained in the files DGLOBALS.MOD

and IGLOBALS.MOD. This module defines global types and variable used in the

simulation.

(j) MIO Mod

The module MIOMod is contained in the files DMIOMod and

IMIOMod.MOD. This module defines a MStreamObj that contains utility methods that

allow for easier input and output. They also provide methods for automatically logging

read input to the MStreamObj, InputLog, also defined in this module.

(k) MGrpMod

The module MGrpMod is contained in the files DMGrpMod.MOD and

IMGrpMod.MOD. This module modifies the basic queue object to form a ListObi that

allows a query of a pointer to an object based on a field ID of an IDObj. The module

defines a ComponentObj and a ComponentListObj which implement the method by

which Components of a Gun or a Shell are kept track of and queried for failures.

2. MODEL INPUT

The simulation parameters are read in from the file, SIMPARM.DAT. The

scenario data, what targets and ships to create, is read in from the file, ACTUAL.SCN.

The data that defines the individual ships, guns, shells, and targets are read in from the

files, *.SHP, *.GUN, *.SHL, and *.TGT, respectively. The data for these files is

currently fictitious data, that represents the actual data that is presently being collected

and built into a data base. The maneuver tracks for the ships are kept in *.MAN files.

The random number seeds for the simulation are kept in the file NGFSSEED.DAT.

31

3. MODEL OUTPUT

All input values that the model uses are logged to the INPUT.LOG file for

every run to ensure that a record of the input that causes a particular output is always

available. A flag can be set in SIMPARM.DAT that will cause a logging of all major

events in each simulation repetition to be logged to the file EVENT.LOG. Due to the

large number of events that occur in each repetition, it is not recommended that the

events be logged for more than two to three repetitions.

The statistical output of the simulation consists of the gun firing rates for

each gun in the system, the overall average firing rate, the mission time and the time

integral target value for each run. In addition, at the termination of the simulation, the

average values of the firing rates, mission time, and time integral target value, along with

their confidence intervals, are all written to the output file called NGFS.OUT.

32

V. SIMULATION ANALYSIS

This simulation is a terminating simulation [Ref. 9:p. 280]. The mission will end

at the time when all the targets are destroyed. Let 1A be the expected value of the random

variable X which is one of the MOEs. Then, if X1, X2, ..., X, are estimators of X assumed

to be independent and identically distributed (lID), then for large n, by the Central Limit

Theorem, the 100(1-a) percent confidence interval for ut is given by:

IA= "XS(n) ± -U2"-" [Ref. 9:p. 149]

where S2(n) is the sample variance, n is the number of samples, zl-a 2 is defined by the

equation 1-a/2 = P(Y< Z1 W2), where Y is a standard normal random variable and

0 < a < 1 is the significance level. For this simulation the normal significance level will

be a = 0.05, but this is user selectable in the SimParm.Dat input file as the

InvNormalCl, which is the value of zl.a/2 for the desired 100*(1-r/2) percent confidence

level. This is the basis for establishing the confidence intervals around the average value

of the various MOEs.

The statistics are calculated using MODSIM II-provided statistical objects that

automatically collect the mean and population standard deviation for a given variable.

The value for the population standard deviation is then converted to the sample variance

to obtain the confidence intervals.

A. MODEL VERIFICATION

The model has been verified to work correctly against a number of test scenarios.

The base line test scenario runs and the 3utput has been examined and is believed to be

33

correct. The model has not been validated as this would require comparing its results to

results obtained from actual ship firings. Since it has not been validated, it has also not

been calibrated and the results obtained should only be viewed relative to one another

and not as absolute numbers. It is the intention to validate the model using data obtained

from actual range firings in the future.

B. TERMINATION CONDITIONS

The simulation is terminated by one of two methods. If the variable StopMode is

set equal to NumReps, then the simulation terminates after MaxReps have been

completed. If StopMode is set equal to Calculate, then the stopping criteria is when the

width of the confidence interval for all MOEs (time integral TargetValue, MissionTime,

FiringRate, and AveFiringRate) is less than StoppingPercentage times their average

value. The variables StopMode and StopingPercentage are set in the file SimParm.Dat.

C. THE SIMULATION SCENARIO

The base line test scenario used to test the simulation is a hypothetical situation of

the bombardment of Iraqi defensive shore installations in the Persian Gulf. The ships

will consist of two Spruance class destroyers, each with two 5 inch 54 caliber guns and

two Perry class frigates, each with one 76mm OTO Melara gun. The ships are

constrained to maneuver on a 5000 yard battle line. The targets will be one headquarters

building, two anti-aircraft batteries, two artillery batteries, three infantry squads, and four

tanks. This is the base line test scenario and is shown in Figure 3.

34

BASE LINE TEST SCENARIO

10 12

2

INF-i

T-2 ART-i

INF-2 AA-1

T-3 ART-2 H-1
VP-i

INF-3 AA-2
1812-2

TA4
IS-2

KEY

S = SPRUANCE CLASS DD INF = INFANTRY
P = PERRY CLASS FFG ART = ARTILLERY
T = TANK HQ = HEADQUARTERS

AA = ANTI-AIRCRAFT BATTERY

MEASUREMENTS IN THOUSANDS OF YARDS

Figure 3. Base Line Test Scenario

D. THE BASE LINE SIMULATION RESULTS

The results of running the simulation on the base line test scenario are presented in

Figure 4. It must be cautioned that these results are not absolute only relative. The

35

numbers themselves have no direct meaning as the model has not been validated or

calibrated against actual results. The only value of these numbers is in comparison.

Comparing the results of two runs with different inputs will give an idea of the relative

effectiveness of the two runs. The results of the test scenario are presented here as an

example and a reference point.

The results are presented in an output file that first consists of the date and time

stamp indicating when the simulation is started. Next follows a number of repetition

records. There is one repetition record for each repetition that is required to be

performed to meet the termination conditions of the simulation. In this case the

termination condition requires that the confidence interval width for the average value of

each MOE be less than 20% of the value of the MOE. This required that 419 repetitions

of the scenario be run. Each repetition record contains the firing rate for each gun, the

global average firing rate, the mission time, and the time integral target value for that

repetition. After the required repetition records are recorded, the end of simulation stats

are output. They consist of the total number of repetitions required to meet the

termination conditions and the average values of all the MOEs, together with their

confidence intervals. Then an execution completion statement and end of simulation date

and time stamp completes the output file.

36

Output from NGFS at Mon Sep 02 01:44:46 1991
t**W***

Rep number: 1
3.94 Firing Rate Lor DD_ -01WUN-1
2.31 Firing Rate For DD -01GUN-2
2.51 Firing Rate For DD_-02GUN-1
1.61 Firing Rate For DD -02GUN-2
4.55 Firing Rate For FF_-01GUN-1
3.70 Firing Rate For FF -02GUN-1

3.10 AveFiringRate
27.27 MissionTime

4666.39 IntegralTargetValue

rep records 2 - 418

Rep number: 419
2.76 Firing Pate For DD -01GUN-1
2.25 Firing Rate For DD -01GUN-2
1.70 Firing Rate For DD -02GUN-1
1.92 Firing Rate For DD -02GUN-2
1.67 Firing Rate For FF -OlGUN-1
1.96 Firing Rate For FF -02GUN-1

2.04 AveFiringRate
29.31 MissionTime

6070.26 IntegralTargetValue
******************* ******* ** **

End of Simulation Stats
419 Total number of Repetitions

4.04 +/- 0.40 Average Firing Rate For DD__-01GUN-1
2.53 4/- 0.15 Average Firing Rate For DD -01GUN-2
3.47 /- 0.35 Average Firing Rate For DD_-02GUN-1
2.58 /- 0.19 Average Firing Rate For DD_ -02GUN-2
4.37 4/- 0.33 Average Firing Rate For FF -01GUN-1
4.82 ±/- 0.39 Average Firing Rate For FF -02GUN-1

3.64 +1- 0.13 Global Average Firing Rate
24.30 +/- 1.00 Average Mission Time

4877.09 +/- 187.02 Average Time Integral Target Value

NGFS Completed execution successfully at Mon Sep 02 06:45:32 1991
*************** **** ** *** *** * ************* ********************

Figure 4. Base Line Test Scenario Results

37

E. ANALYSIS OF THE SIMULATION RESULTS

As this will be part of a larger model, little analysis of actual simulation results has

been conducted. That will occur later when the data base and control programs for the

eF system have been completed. Several interesting simulation results were noted. One

is the fact that for the test scenario, if no failures are allowed to occur in any component,

that the average time integral target value was reduced by approximately 43%. This is a

very significant improvement and means that reliability plays a large part in the

performance of the NGFS system.

Another interesting result is the importance that communications delays play in the

results of the simulation. They are the parameter with the most effect on the values of

the MOEs. This can be readily seen when the firing rates of the guns are compared to the

time allowed for communications between the spotter and the ship. The final result of

note is the role that the variable TooLong plays in the scenario. If a failure occurs and

the repair time is longer than TooLong, then the target must be reassigned to a different

gun. This means that all the time invested in prosecuting the target to that point is lost

and the new gun must start all over again by spotting the target. This results in a

considerable penalty in the value of the MOEs. As a result, there should exist an

optimum value for TooLong that will result in optimizing the MOEs for a given

scenario.

38

VI. PROBLEMS ENCOUNTERED

Several types of problems were encountered in the design and implementation of

this simulation that have a direct relationship to object-orientation in general and

MODSIM II in particular. Several of the major problems and their solutions are

described below.

A. SWITCHING TO OBJECT-ORIENTED PROGRAMMING

The redevelopment of a model written in the linear programming language,

FORTRAN, into the object-oriented language, MODSIM II proved to be more difficult

than expected. The first code that was converted to MODSIM II code tended to be linear

code in an object-oriented language and was a patchwork of exceptions and fixes at best.

Attempts to fix this were unsuccessful. The final solution was to treat the original

attempt as a prototype and once it was working to some degree, set it aside and start over.

This allowed the lessons learned in the areas of what objects need to exist, what data they

need to contain, what methods they need to do, to be applied to a clean slate. This

resulted in much cleaner, more truly object-oriented code, and is well worth the effort in

the long run.

B. TIMING AND STATE TRANSITION

Another area that was particularly troublesome was the area of timing and state

transition. Timing concerns the order in which events occur in simulation time and in

real time. State transition concerns the way the status of an object is changed. Due to

the nature of OOP and process-based simulation, there is no linear flow path through the

39

code and as Fishman stated there is resultant loss of programming control

[Ref. 7:pp. 138-1391. This loss of programming control causes problems in timing and

state transition. This is because it is difficult to ensure that events that always need to

occur in a particular order (timing) are actually executed in that particular order. The

loss of programming control also makes it difficult to ensure that the fields of an object

are changed correctly (state transition). An example of where the timing problem could

occur is in the assignment, by the headquarters object, of a target to a ship and the

subsequent assignment, by the ship, of the target to a particular gun. It is obvious that

the these events must happen in the order stated, but ensuring that they did was difficult.

An example of the state transition problem would be in maintaining the correct status of

a gun while it is firing, breaking down, being repaired, and the ship is maneuvering.

The solution to this type of problem is that most of the design work of the model

should be put into timing and state transition. The simulation should be kept simple at

first, just concentrat~ig on timing and state transition. When the simulation runs

correctly and the timing and state transition problems have been solved, then the

simulation should be enhanced or expanded to meet the requirements.

One aside on this issue is that problems of this nature mimic the actual problems of

communications (timing) and status (state transition) that exist in real life. Consequently,

looking at how the problem is handled in real life frequently leads to ideas of how to

handle the problem in a program.

C. MULTIPLE CONCURRENT PROCESSES

The multiple concurrent processes that can occur in the simulation language

MODSIM II are both a feature and a source of problems. They are a feature in that they

can allow one object to be performing many different activities in the form of concurrent

methods at the same time. This greatly simplifies the code that is needed in situations

40

where this concurrence is applicable. The problems arise in keeping track of what an

object is doing at any one instance in time. Where the code is specifically designed with

concurrence in mind this is frequently not a problem, because the need to keep track of

what is going on is taken into account in the design. Where problems really show up,

however, is when methods that were not meant to be concurrent happen concurrently.

For example, in this simulation, MODSIM II will allow the same ship to maneuver in

two different directions at the same time. Obviously this should not occur, but the

program will usually execute without error when it does occur with the result that the

state of the object in question, in this case the location of the ship, bouncing around

between what one method tries to set it as and what the other method tries to set it as.

The solution to this type of problem is to keep track of the processes that are

occurring in an object at any given time. This is done is by setting flags and state

descriptors. In this simulation this was accomplished with the use of the Process field in

the ship and gun objects. It was not found to be necessary in the design of the other

objects.

D. MODEL SIZE LIMITATIONS

The present model is at the practical limit of the size of a model that can be

developed and executed on an IBM PC compatible running DOS. The compilation of the

larger modules bumped up against the size of the largest module that can be successfully

compiled under DOS. If too many output statements were added or if the trace back

option of MODSIM II was used, the program could not be compiled successfully.

There was also problem with the time required for execution. The base line test

scenario required approximately 5 hours to run on a 386/25MHZ machine. It executed

one repetition of the test scenario in approximately 43 seconds. To expand the scenarios

and allow this model to be of practical use, it has to run faster.

41

The solution to both these problems is to move to a more powerful platform. The

portability of MODSIM II is very handy in this regard, because the code can be

transferred to a Sun workstation, for example, recompiled and executed with extremely

few, if any, changes required. In addition, as long as objects do not get as complicated as

the gun object in this simulation, the object can be written and debugged on a PC and

transferred to a more powerful machine for inclusion in the complete simulation.

There is a version of MODSIM II which will run on a PC under the OS/2 operating

system. This would solve the inability to compile large modules, but the speed of

execution would still be inadequate. The time required to execute may be successfully

addressed by the newer, more powerful PCs coming on the market, specifically the new

486 machines or a faster 386 machine with a math coprocessor.

42

VII. EXPANSION OF THE BASIC MODEL

One of the goals of this research was to examine the effects that writing the

simulation in an OOP language had on the ease with which the original model could be

expanded upon. In this area, object-orientation was especially useful. The model was

very easily modified. The modifications could usually be developed and tested outside

of the main program and then easily incorporated into the main program. A few of the

ways in which the model was expanded are described below.

A. PRIORITY OF TARGET ENGAGEMENTS

The initial version of the model assigned targets on the basis of the order in which

they were read in from the data file. It was realized that this was limiting, not so much in

the base line case, but if the model was to be expanded. Therefore, it was decided to

expand the model to engage the targets based on a target priority value. This was

accomplished by using both the reusability and inheritance attributes of OOP.

The targets were initially maintained by the HQ object in a queue object supplied

with MODSIM II. It was realized that the targets could be engaged in a priority schema

if the queue was changed to a ranked queue based on a target's priority value. This was

done. A Priority field was added to the Target object. The TargetList queue was

changed to a ranked queue object (also supplied by MODSIM II) and the ranking method

was overridden to rank the Target objects based on their priority with the highest priority

corresponding to a priority value of one. Nothing else changed in the model. Now the

highest priority target would always be first in the queue and would always be assigned

to ship first.

43

B. DAMAGE MODEL

The damage model in the FORTRAN program [Ref. 2] was the basis for the

original damage model in this simulation. It was known that this would be inadequate

for different sizes and types of shell, but it was desired to make the gun work with this

simple damage model first and enhance it later. The enhancement to the present damage

model described in Chapter II took advantage of the modular and data encapsulation

features of OOP.

The changes consisted of only changes to the Shell and the Target modules and

their associated data files. A MaxDamage field and EDR field was added to the Shell

object and appropriately initialized. The DFList was added to the Target object and

appropriately initialized. The rest of the implementation consisted of changing the code

in the Target method ImpactRound to reflect the new model. Again, the enhancement

was very simple with little effect on the model as a whole.

C. RANDOM NUMBER SEEDS

The final enhancement that will be described is that of enhancements done to the

way random variables were used in the simulation. The original simulation had one

random number stream that generated all random numbers. It was realized that this

generated a certain dependence in the simulation that was evident upon changing one

input value to one random variable and having the sequence of random numbers change

for all subsequent random variables. To avoid this, it was decided to have a separate

random number stream for all classes and instances of random variables. In addition, the

ability to specify a certain random number seed for a particular random number generator

was desired.

This was implemented by the addition of the Seed module. This module

implements two new types of objects. The first is a SeederObj object that reads in a list

44

of seeds from the file NGFSSEED.DAT. The list of seeds is divided into separate lists

for Ship, Gun, and Target seeds. In response to a request to GetNextSeed and being

passed a name of a seed list, the SeederObj returns the next random number seed in that

seed string. This module defines a new type of object, MRandObj, that inherits the

attributes of the MODSIM II provided RandObj and adds the ability to get a seed from

the seeder object with the method GetSeed. The variable seeder, of type SeederObj, is

also defined in this module to be used as the global variable to allow access to the seeder

from all modules.

This enhancement was developed and debugged separately from the main

simulation and its integration consisted of adding code to create the seeder, read the lists

of seeds, adding new MRandObj objects where required and telling them to GetSeed.

Again, a major expansion was easily incorporated into the existing simulation due to the

nature of OOP.

45

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. OBSERVATIONS

1. NGFS

NGFS was successfully modeled. The effects of component reliability on

NGFS system performance can now be analyzed.

2. OBJECT ORIENTED, PROCESS BASED SIMULATION

Object-oriented programming delivers on its promises in a simulation

environment. The simulation code was easier to write, debug, maintain, and enhance in

nearly all situations encountered than similar code written in the nrogramming language

FORTRAN. The process-based simulation concept simplified the design and

maintenance of large simulations.

3. CONVERTING TO OBJECT-ORIENTED PROGRAMMING

Converting a simulation that was written in a linear programming language

to one that is written in an OOP language is difficult. However, the results justify the

additional effort. The features of OOP will pay off over the lifetime of the model,

4. LARGE SIMULATIONS AND THE PC

Large simulation development and execution on a PC under DOS and

MODSIM II is presently not feasible. There are too many restrictions. The size of a

module is restricted to around 800 lines of code. The number of type definitions is

limited by the design of the PC. The execution of complicated programs takes a long

time (approximately 5 hours for the test scenario to run to a 20% CI width on a

386/25Mhz machine). The executable and all dynamic variables must fit into the 640K

46

available on a PC. All these restrictions have the net effect of limiting model

development to approximately the size of this simulation. However, the size of the

model may increase significantly as CACI releases new versions of MODSIM II that run

on a PC under Windows or OS/2.

One key fact to remember is the portability of MODSIM II code. If the

simulation gets too big for a PC, it can be transferred to a more powerful machine and

executed there. This ensures that the simulations will not be artificially limited by the

architecture of the machine on which they run.

5. MODSIM H

MODSIM II is an excellent simulation language. Its object-oriented,

process-based approach to simulation results in code that is efficient to write,

maintainable and highly expandable. The major flaw of the language is the existence of

bugs in the code generated by the compiler. These bugs, mainly involved in the use of

interrupts and memory, are very annoying. CACI Corporation is addressing these bugs

and plans to fix them in a future release. Another flaw of the language is its lack of

adequate Input/Output facilities. The ability to control the input and output to the screen

or a file is very limited. To its credit, CACI Corporation addresses the screen portion of

this problem with SIMGRAPHICS II [Ref. 10], which is an excellent addition of

animation and presentation graphics to MODSIM II. The problem is that currently,

SIMGRAPHICS is available only on workstation or higher class machines or PC's

running OS/2.

B. SUGGESTIONS FOR FURTHER RESEARCH

1. The next logical step in the research of this model is to complete the data

base and control program that will allow it to be used, with relative ease, by the NWSC

for its intended purpose of exploring the relative benefits of component reliability on

47

overall NGFS system performance. This enhancement is presently under development.

Due to the size of the model, the simulation will be transferred to a workstation to allow

for its continued growth.

2. It would be useful to validate the model against real world data by setting up

a real test with actual ships and targets and then modeling it to see if the firing rate and

mission time are accurately predicted by the model. This would also allow the model to

be calibrated so that it would accurately predict such factors as mission times and types

of failures.

3. Increase the fidelity of the model. Modify the control structures to model

real life with more fidelity. For example, have the HQ object maintain a list of which

target is assigned to which ship and what the status of each ship and target is. This

would result i, redundant data and increase the complexity and size of the model but

make it more realistic. It would also prevent some of the subtle timing and control

problems inherent in OOP simulations that occurred in this simulation because the model

did not use the same timing and state transition as found in real life. More fidelity could

be added by creating a Spotter Object that would allow for errors in the spotting process.

Currently the spotter is assumed to do his job with no error. This would increase both

the resolution and fidelity of the model as errors in the spotting process constitute a large

source of errors in the NGFS system. There are many other ways in which the fidelity of

the model could be improved. Finally, it must be cautioned, that the utility of these

improvements is probably not worth the trouble unless the question being addressed is

directly effected by the improvement.

C. CONCLUSIONS

Overall this research was a success. The goals were achieved. NGFS was

successfully modeled and some of the advantages and disadvantages of conducting

48

simulations in an OOP, process-based simulation environment were documented. There

remains much work to be done to realize the potential of this model, especially in the

area of making it more user friendly and conducting the validation and calibration of it.

Finally, it is worth repeating, that object-oriented programming delivers on its promises

and results in models that are more reusable, more reliable, easier to expand and easier to

maintain than non-object-oriented programming languages. With the ever increasing

complexity of simulations, object-oriented programming is where the future lies.

49

APPENDIX A NGFS SIMULATION PROGRAM

9/11/91
MAIN MODULE NGFS;

--

PROGRAM NAME: NGFS
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/16/91
LAST MODIFIED: 8/12/91

DESCRIPTION:

This is the main module of a Naval Gunfire Support Simulation.

FROM UtilMod IMPORT DateTime, ClockTimeSecs;
FROM SIMCTRL IMPORT RunSimulation;

VAR
TimeStr : STRING;
StartTime : INTEGER;

BEGIN
DateTime(TimeStr);
StartTime := ClockTimeSecs();
OUTPUT("NGFS STARTING AT *, TimeStr);

RunSimulation;

DateTime(TimeStr);
OUTPUT("END OF NGFS --- NORMAL TERMINATION ON ",TimeStr);
OUTPUT("Run took ", ClockTimeSecs(-StartTime, " seconds.");

END MODULE.

50

9/11/91
DEFINITION MODULE SIMCTRL;

MODULE NAME: SIMCTRL
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 8/12/91
LAST MODIFIED: 8/12/91

DESCRIPTION:

This is the definition module that controls the simulation of aspect of the
Naval Gunfire Support Simulation.

PROCEDURE RunSimulation;

END MODULE.

51

9/11/91
IMPLEMENTATION MODULE SIMCTRL;

(--

MODULE NAME: SIMCTRL
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITT'EN: 8/12/91
LAST MODIFIED: 9/1/91

DESCRIPTION:

This is the module that controls the simulation of aspect of the Naval
Gunfire Support Simulation.

FROM GLOBALS IMPORT EventLog, LogEvents;
FROM UtilMod IMPORT DateTime, ClockTimeSecs;
FROM SimMod IMPORT StartSimulation, ResetSimTime;
FROM StatMod IMPORT RTimedStatObj;
FROM HQ IMPORT HQObj;
FROM IOMod IMPORT FileUseType(Output);

PROCEDURE RiunSimulation;

VAR
HQ :HQObj;

SimDone :BOOLEAN;

Rep :INTEGER;

BEGIN

NEW(HQ);
ASK HQ TO CreateScenario;
Rep := 0;

REPEAT

Rep := Rep + 1;
OUTPUT(*Beginning rep ",Rep);

IF LogEvents
ASK EventLog To WriteString("Beginning rep)

ASK EventLog TO WriteLnlnt(Rep,5);
END IF;
ResetSimTime (0 0);
ASK HQ TO InitializeScenario;
ASK HQ TO RegisterAliShips;
StartSimulation;
OUTPUT(*Rep ",Rep," completed. Integral Target Value =-

GETMONITOR(HQ.TargetValue,RTimedStatObj) .Sum);
IF LogEvents

ASK EventLog TO WriteString("Rep)

ASK EventLog TO Writelnt(Rep,S);
ASK EventLog TO WriteString(" completed. Integral Target Value
ASK EventLog TO WriteLnReai(

GETMONITOR(HQ.TargetValueRTimedStatObj) .Sum,8..2);

52

END I F;

ASK HQ TO CalculateRunStats(Rep, SimDone);

UNTIL SimDone;

ASK HQ TO ReportStats(Rep);

DISPOSE(HQ);

END PROCEDURE;

END MODULE.

53

9/11/91
DEFINITION MODULE HQ;

MODULE NAME: HQ
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/17/91
LAST MODIFIED: 8/2/91

DESCRIPTION:

This is a module o~f the NGFS simulation that defines the HQ or
headquarters object. HQ is responsible for creating the scenario and
assigning targets to ships to be engaged.

FROM StatMod IMPORT SREAL, SINTEGER, TSREAL;
FROM MGrpMod IMPORT ListObj;
FROM GrpMod IMPORT RankedObj;

TYPE

StopModeTYPE = (NumReps, Calculated);

TargetListObj = OBJECT(Rankedobj)
OVERRIDE

ASK METHOD Rank(IN a, b : ANYOBJ) : INTEGER;
END OBJECT;

I -- I

HQObj = OBJECT

Stopsim :BOOLEAN;

MissionTime :SREAL;

AveFiringRate :SREAL;

TargetValue :TSREAL;

IntegralTargetValue: SREAL;
StopMode :StopModeTYPE;

MaxRep :INTEGER;

StoppingPercentage :REAL;

InvNormalCI REAL;

ShipList :ListObj;

TargetList :TargetListobj;

ASK METHOD CreateScenario;
ASK METHOD InitializeScenario;
ASK METHOD CalculateRunStats(IN Rep :INTEGER;

OUT SinDone :BOOLEAN);

ASK METHOD ReportStats(IN Rep : INTEGER);
ASK METHOD UpdateTargetValue;
ASK METHOD RegisterAllShips;

54

TELL METHOD AssignTargets;

END OBJECT;

END MODULE.

55

9/11/91
IMPLEMENTATION MODULE HQ;

MODULE NAME: HQ
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/17/91
LAST MODIFIED: 9/1/91

DESCRIPTION:

This is a module of the NGFS simulation that implements the HQ or
headquarters object. HQ is responsible for creating the scenario and
assigning targets to ships to be engaged.

FROM GLOBALS IMPORT ShellList, xyPoint, TooLong, LOG, SpotDeltaT,
SpecifiedShellRecord, LogEvents, EventLog;

FROM TARGET IMPORT TargetObj, ALL TargetStatusTYPE;
FROM SHIP IMPORT ShipObj, ALL EngagementStatusTYPE;
FROM GUN IMPORT GunObj;
FROM MIOMod IMPORT MStreamObj, InputLog;
FROM IOMod IMPORT FileUseType(Input, Output);
FROM SHELL IMPORT ShellObj;
FROM SimMod IMPORT SimTime, PendingListDump, Interrupt,InterruptAll,

ActivityListDump;
FROM Debug IMPORT TraceStream;
FROM StatMod IMPORT RTimedStatObj, RStatObj;
FROM MathMod IMPORT SQRT;
FROM UtilMod IMPORT DateTime;
FROM SEED IMPORT seeder;

. .- -

OBJECT TargetListObj;
ASK METHOD Rank(IN a, b : ANYOBJ) : INTEGER;

VAR
Targetl : TargetObj;
Target2 : TargetObj;

BEGIN
Targetl := a;
Target2 :=b;
IF Targetl.Priority > Target2.Priority

RETURN 1;
ELSIF Targetl.Priority = Target2.Priority

RETURN 0;
ELSE

RETURN -1;
END IF;

END METHOD;
END OBJECT;

56

OBJECT HQObj;

ASK METHOD CreateScenario;

VAR
TimeStr STRING;
SceneFile MStreamObj;
SimFile MStreamObj;
StopModeString STRING;
NuxnShips INTEGER;
NumTargets INTEGER;
NumShells INTEGER;
Ship ShipObj;
Target TargetObj;
Shell ShellObj;
I INTEGER;
Type STRING;
ID STRINC;
Position xyPoint;
ShipCourse REAL;
ShipSpeed REAL;
TargetPriority INTEGER;
TargetFOV INTEGER;
ManFileName STRING;
SpecifiedShells SpecifieciShellRecord;
ThisShell SpecifiedShellRecord;
PreviousSpecifiedShell :SpecifiedShellRecord;
SeedFile STRING;
LogEventsStr STRING;
tempstr STRING;

BEGIN
NEW(InputLog);
ASK InputLog TO Open("INPUT.LOG", Output);
NEW(LOG);
ASK LOG TO Open("NGFS.OUT",Output);
ASK LOG TO WriteLnStr(

ASK LOG TO WriteString(VOutput from NGFS at)

DateTime(TimeStr);
ASK LOG TO WriteLnStr(TimeStr);
ASK LOG TO WriteLnStr(

ASK InputLog TO WriteLnStr(

ASK InputLog TO WriteString(MInput Log File for NGFS run at)
ASK InputLog TO WriteLnStr(TineStr);
ASK InputLog TO WriteLnStr(

NEW(CSimFile);
ASK SimFile TO CoenC"SimParm.dat", Input);
ASK InputLog TO WriteLnStr(

ASK InputLog TO WriteLnStr("Simulation Paramneters");
ASK SimFile TO SkipLines(12);
ASK SimFile TO ReadLnStrLOG3(StapModeStr,*ng,"StopMode&);

57

IF SUBSTR(1..1,StopModeString) = C
StopMode Calculated;

ELSE
StopMode :=NumReps;

END IF;
ASK SimFile To ReadLnIntLOG(MaxRep,*MaxRep');
ASK SimFile TO ReadLnRealLOG(StoppingPercentage, StoppingPercentagel);
ASK SiniFile To SkipLines(l);
ASK SimFile To ReadLnRealLOG(InvNorialCI, InvNormalCI");
ASK SimFile TO ReadLnStrLOG(SeedFile,"SeedFile name");
ASK SimFile TO ReadLnStrLOG(LogEver'sStr, "LogEvents");
IF SUBSTR(l,l,LogEventsStr) ="T

LogEvents TRUE;
ELSE

LogEvents FALSE;
END IF;
NEW(seeder);
ASK seeder TO ReadSeeds(SeedFile);
ASK SimFile TO Close;
DISPOSE(SimFile);

NEW(ShellList);

ASK InputLog TO WriteLnStr(

ASK InputLog TO WriteLnStr("Scenario Data*);
NEW (SceneFile);
ASK SceneFile TO Open(*ACTUAL.SCN", Input);
ASK SceneFile TO SkipLines(ll);
ASK SceneFile To ReadLnRealLOG (TooLong, "TooLona");
ASK SceneFile To SkipLines(3);

NEW(TargetList);
ASK SceneFile TO ReadLnIntLOG(NurnTargets,"NumTargets");
ASK InputLog TO WriteLn;
ASK SceneFile TO SkipLines(3);
FOR I:=l TO NumTargets

ASK InputLog TO WriteLnStr(
"TargetType TargetlD Xpos Ypos Priority FOV Specified Shells*);

ASK InputLog TO WriteLnStr(

ASK SceneFile TO ReadString(Type);
tempstr :
REPLACE(tempstr,13-STRLEN(Type),12,Type);
ASK InputLog TO WriteString(tempstr);
ASK SceneFile TO ReadString(ID);
tempstr :
REPLACE(ternpstr,12-STRLEN(ID),l2,ID);
ASK InputLog TO WriteString(tempstr);
ASK SceneFile TO ReadReal(Position.x);
ASK InputLog TO WriteReal(Position.x,lO,2);
ASK SceneFile TO ReadReal(Position.y);
ASK InputLog TO WriteReal(Position.y,9,2);
ASK SceneFile TO Readlnt(TargetPricrity);
ASK InputLog TO Writelnt(TargetPriority,6);
ASK SceneFile TO Readlnt(TargetFOV);
ASK InputLog TO Writelnt(TargetFOV,7);
ASK InputLog TO WriteString(" ");

58

NEW(SpecifiedShelis);
ThisShell :=SpecifiedShelis;
ASK SceneFile TO ReadString(ThisShell.ShellKind);
ASK InputLog TO WriteString(ThisSheil.ShellKind);
IF ThisSheil.ShellKind <> "none"

REPEAT
PreviousSpecifiedShell :=ThisSheli;
NEW(ThisShell);
PrevicusSpecifiedShell .NextShell := ThisShell;
ASK SceneFile TO ReadString(ThisShell.ShellKind);
ASK InputLog TO WriteString(" "+ThisShell.ShellKind);

UNTIL ThisShell.ShellKind = ""
ASK InputLog TO WriteLn;
ASK InputLog TO WriteLnStr(

DISPOSE (ThisShell);
PreviousSpecifiedShell .NextShell :=NILREC;

ELSE
ASK InputLog TO WriteLn;
ASK InputLog TO WriteLnStr(

DISPOSE(SpecifiedShe11s);
SpecifiedShells := NILREC;

END IF;

NEW(Target);
ASK Target TO CreateTarget(Type, ID, Position, TargetPriority,

TargetFOV, SpecifiedShells, SELF);
ASK TargetList TO Add(Target);

END FOR;

Target := ASK TargetList First));
WHILE Target <> NILOBJ
OUTPUT(Target.ID," priority = ",Target.Priority);
Target :=ASK TargetList Next(Target);
END WHILE;

ASK SceneFile TO SkipLines(3);

ASK InputLog TO WriteLnStr(

ASK SceneFile TO ReadLnIntLOG(NumShips,"NumShips");
ASK InputLog TO WriteLn;
NEW(ShipList);
ASK SceneFile To SkipLines(3);
FOR I:=l TO NumShips
ASK InputLog TO WriteLnStr(

*Shipllype ShipID Xpos Ypos Course Speed ManFileName");
ASK InputLog TO WriteLnStr(

ASK SceneFile TO ReadString(Type);
ternpstr:-"
REPLACE(ternpstr,l3 - STRLEN(Type),12,Type);
ASK InputLog TO WriteString(tempstr);
ASK SceneFile TO ReadString(ID);
tempstr :
REPLACEftempstr,12 - STRLEN(ID),12,ID);

59

ASK Input.Log TO WriteString(tenpstr);
ASK SceneFile TO ReadReal(Position.x);
ASK InputLog TO WriteReal(Position.x,1O.1);
ASK SceneFile TO ReadReal (Position.y);
ASK InputLog TO WriteReal(Position.y,9,1);
ASK SceneFile TO ReadReal(ShipCourse);
ASK InputLog TO WriteReal (ShipCourse, 8,1);
ASK SceneFile TO ReadReal (ShipSpeed);
ASK InputLog TO WriteReal (ShipSpeed,7, 1);
ASK SceneFile TO ReadLnStr (ManFileName);
ASK InputLog TO WriteLnStr(* *+ManFileName);
ASK InputLog TO WriteLnStr(

NEW (Ship);
ASK Ship To CreateShip(Type, ID, Position, ShipCourse,

ShipSpeed, ManFileNane, SELF);
ASK ShipList TO Add(Ship);

END FOR;

ASK SceneFile TO Close;
DISPOSE (SceneFile);
ASK InputLog TO WriteLn;
ASK InputLog TO WriteLnStr(

ASK InputLog TO WriteLnStr(

ASK InputLog TO WriteLnStr("End of NGFS Input Log");
ASK InputLog To WriteLnStr(

ASK InputLog TO WriteLnStr(

ASK InputLog TO Close;
DISPOSE(InputLog);
DISPOSE (seeder);
IF LogEvents

NEW(EventLog);
ASK EventLog TO Open(*Event.LOG", Output);
ASK EventLog TO WriteLnStr(

ASK EventLog TO WriteString(*EventLog from NGFS at")
ASK EventLog TO WriteLnStr(TimeStr);
ASK EventLog TO WriteLnStr(

END IF;

OUTPUT(*CREATED SCENARIO");

END METHOD;

60

ASK METHOD InitializeScenario;

VAR

Ship Shipobj;
Target TargetObj;

BEGIN

Ship :=ASK ShipList Firsto;
WHILE Ship <> NILOBJ

ASK Ship To InitializeShip;
Ship :=ASK ShipList Next(Ship);

END WHILE;

Target :=ASK TargetList Firsto;
WHILE Target <> NILOBJ

ASK Target TO InitializeTarget;
Target :=ASK TargetList Next(Target);

END WHILE;

StopSim :=FALSE;
ASK GETMONITOR(TargetValue, RTimedStatObj) TO Reset;
ASK SELF TO UpdateTargetValue;

END METHOD;

ASK METHOD UpdateTargetValue;

VAR
Subtotal REAL;
Target TargetObj;

BEGIN
Subtotal 0.0;
Target :=ASK TargetList Firsto;
WHILE Target <> NILOBJ

Subtotal :=Subtotal + Target.LifePoints;
Target :=ASK TargetList Next(Target);

END WHILE;
TargetValue :=Subtotal;
IF LogEvents

ASK Event.Log TO WriteString("SiiTime
ASK EventLog TO WriteReal(SimTinme(,8,2);
ASK EventLog TO WriteString(" Current Target Value
ASK EventLog TO WriteLnReal (TargetValue,8,2);
IF SimTime() > 0.0

ASK EventLog TO WriteString("Current Time Integral Value
ASK EventLog TO WriteLnReal (GETMONITOR(TargetValue,

RTimedStatobj) .Surn,8,2);
END IF;

END IF;

END METHOD;

61

ASK METHOD CalculateRunStats(IN Rep INTEGER;
OUT SimDone BOOLEAN);

VAR
I INTEGER;
RPM REAL;
SumRPM REAL;
GunDone BOOLEAN;
Ship :ShipObj;

Gun :GunObj;

BEGIN

Sim~one :=TRUE;

ASK LOG TO Wient
ASK LOG TO WriteString(" Rep number: ;

ASK LOG TO WriteLnlnt(Rep,S);
Ship := ASK ShipList Firsti);
WHILE Ship <> NILOBJ

Gun := ASK Ship.GunList First));
WHILE Gun <> NILOBJ

I := I + 1;
ASK Gun TO CalRunStats(Rep, StoppingPercentage, InvNormalCI,

RPM, GunDone);
SumRPM :=SumRPM + RPM;
SimDone :=Sim~one AND GunDone;
ASK LOG TO WriteReai(RPM,10,2);
ASK LOG TO WriteString(" Firing Rate For)

ASK LOG TO WriteLnStr(Gun.ID);
Gun := ASK Ship.GunList Next (Gun);

END WHILE;
Ship := ASK ShipList Next(Ship);

END WHILE;
AveFiringRate := SumRPM/FLOAT(I);
IntegralTargetVaiue : = GETMONITOR (TargetValue, RTimedStatObj) .Sum;
ASK LOG TO WriteLn;
ASK LOG TO WriteReal(AveFiringRate,10,2);
ASK LOG TO WriteLnStr(" AveFiringRate ;
ASK LOG TO WriteReal(MissionTime,10,2);
ASK LOG TO WriteLn~tr(* MissionTime ;
ASK LOG TO WriteReal(IntegraiTargetVaiue,10,2);
ASK LOG TO WriteLnStr(" IntegralTargetValue ;
IF StopMode =NunReps

SinDone (Rep >= MaxRep);
ELSIF Rep >= 10

SimDone := SinDone AND ((StoppingPercentage*
ASK GETMONITOR(AveFiringRate,RStatObj) Mean()) >=
(2. 0*InvNormalCI*
(ASK GETMONITOR(AveFiringRate,RStatObj) StdDev()/
SQRT(FLOAT(Rep)-l.0));

SimDone :=SinDone AND ((Stopping~ercentage*
ASK GETMONITOR(IntegralTargetValue,RStatObj) Mean()) >=
(2. 0*InvNormaiCI*
(ASK GETMONITOR(IntegralTargetValue,RStatObj) StdDev()/
SQRT(FLOAT(Rep) -1.0))));

SimDone :=SimDone AND ((StoppingPercentage*
ASK GETMONITOR(MissionTime,RStatObj) Mean()>

62

(2. 0*InvNorrnalCI*

(ASK GETMONITOR(MissionTine,RStatObj) StdDev()/
SQRT(FLOAT(Rep) -1.0))));

ELSE
SimDone :=FALSE;

END IF;

END METHOD;

ASK METHOD ReportStats(IN Rep :INTEGER);

VAR

Gun Gunobj;

Ship ShipObj;
TimeStr STRING;

BEGIN

ASK LOG TO WriteLnStr(

ASK LOG TO WriteLnStr(

ASK LOG TO WriteLnStr(*End of Simulation Stats*);
ASK LOG TO Writelnt (Rep, 10);

ASK LOG TO WriteLnStr(" Total number of Repetitions");
Ship :=ASK ShipList First));

WHILE Ship <> NILOBJ

Gun :=ASK Ship.GunList First));
WHILE Gun <> NILOBJ

ASK LOG TO WriteReal (ASK GETMONITOR(Gun.AveFiringRate,RStatObj)
Mean(),l0,2);

ASK LOG TO WriteString(" /-)

ASK LOG TO WriteReal(InvNormalCI*
(ASK GETMONITOR(Gun.AveFiringRate,RStatObj) StdDevo/
SQRT(FLOAT(Rep) -1.0)) ,l0,2);

ASK LOG TO WriteString(V Average Firing Rate For)
ASK LOG TO WriteLnStr(Gun.ID);

Gun :=ASK Ship.GunList Next(Gun);

END WHILE;
Ship :=ASK ShipList NextiShip);

END WHILE;

ASK LOG TO WriteLn;

ASK LOG TO WriteReal (ASK GETMONITOR(AveFiringRate,RStatObj) Mean(),l0,2);
ASK LOG TO WriteString(' +/-");

ASK LOG TO WriteReal(InvNormalCI
(ASK GETMONITOR(AveFiringRate,RStatObj) StdDev()/
SQRT(FLOAT(Rep) -1. 0)),10, 2)

*ASK LOG TO WriteLnStr(" Global Average Firing Rate");

ASK LOG TO WriteReal (ASK GETMONITOR(MissionTime,RStatObj) Mean(),l0.,2);
ASK LOG TO WriteString)" +/-');
ASK LOG TO WriteReal(InvNormalCl*

(ASK GETMONITOR(MissionTime,RStatObj) StdDev()/
SQRT(FLOAT(Rep) -1.0)) ,l0,2);

ASK LOG TO WriteLnStr(" Average Mission Time");
ASK LOG TO WriteReal(ASK GETMONITOR(IntegralTargetValue,RStatObj) Mean)),

10,2);

63

ASK LOG TO WriteString(" +/-*);
ASK LOG TO WriteReal(InvNormalCI*

(ASK GETMONITOR(IntegralTargetValue,RStatObj) StdDev()/
SQRT(FLOAT(Rep)-l.0)),I0,2);

ASK LOG TO WriteLnStr(" Average Time Integral Target Value");
ASK LOG TO WriteLnStr(

ASK LOG TO WriteLnStr(

ASK LOG TO WriteString(*NGFS Completed execution successfully at ");
DateTime(TimeStr);
ASK LOG TO WriteLnStr(TimeStr);
ASK LOG TO WriteLnStr(

ASK LOG TO WriteLnStr(

ASK LOG TO Close;
DISPOSE(LOG);
IF LogEvents
ASK EventLog TO WriteLnStr(

"**w********************************)

ASK EventLog TO WriteLnStr(

ASK EventLog TO WriteString(*NGFS Completed execution successfully at ");
ASK EventLog TO WriteLnStr(TimeStr);
ASK EventLog TO WriteLnStr(

ASK EventLog TO WriteLnStr(

ASK EventLog TO Close;
DISPOSE(EventLog);

END IF;

END METHOD;

ASK METHOD RegisterAllShips;

VAR
Ship ShipObj;

BEGIN
Ship ASK ShipList First);
WHILE Ship <> NILOBJ

ASK Ship TO RegistrationFire;
Ship := ASK ShipList Next(Ship);

END WHILE;
END METHOD;

TELL METHOD AssignTargets;

VAR
Target TargetObj;
Assigned BOOLEAN;

64

Ship ShipObj;
AllDestroyed BOOLEAN;

BEGIN

IF LogEvents
ASK EventLog TO WriteString("HELLO FROM ASSIGN TARGETS SIMTIME
ASK EventLog TO WriteLnReal(SimTime(),8,2);

END IF;

Target := ASK TargetList First(;
Assigned := TRUE;
AllDestroyed := TRUE;
REPEAT

AllDestroyed := AllDestroyed AND (Target.Status = Destroyed);
IF (Target.Status <> Destroyed) AND (NOT Target.Assigned)

Assigned := FALSE;
Ship := ASK ShipList First();
WHILE (Ship <> NILOBJ) AND (NOT Assigned)

IF (((ASK Ship EngagementStatus) < FullyEngaged) AND
(ASK Ship RegistrationComplete))

IF LogEvents
ASK EventLog TO WriteLnStr(Target.ID+" assigned to

"+Ship.ID);

END IF;
ASK Ship TO EngageTarget(Target);
Assigned := TRUE;

ELSE
Ship := ASK ShipList Next(Ship);

END IF;

END WHILE;
END IF;
Target := ASK TargetList Next(Target);

UNTIL (Target = NILOBJ) OR NOT Assigned;

IF AllDestroyed AND NOT StopSim
StopSim := TRUE;

MissionTime := SimTime();

Ship := ASK ShipList First));
WHILE Ship <> NILOSJ

ASK Ship TO HaltManeuvers;
Ship := ASK ShipList Next(Ship);

END WHILE;

IF LogEvents

ASK EventLog TO WriteLnStr(
~****** ALL TARGETS DESTROYED -- TERMINATING ****************)

ASK EventLog TO WriteString(" SIMTIME =

ASK EventLog TO WriteLnReal(SimTime(),8,2);
END IF;

END IF;

IF LogEvents
IF Assigned

ASK EventLog TO WriteLnStr(*LEAVING ASSIGN TARGETS Assigned = TRUE");
ELSE

ASK EventLog TO WriteLnStr("LEAVING ASSIGN TARGETS Assigned = FALSE");

END IF;

END IF;

65

END METHOD;

END OBJECT;

END MODULE.

66

9/11/91
DEFINITION MODULE SHIP;

--

MODULE NAME: SHIP
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/23/91
LAST MODIFIED: 8/1/91

DESCRIPTION:

This is a module of the NGFS simulation that defines the Ship object.
Ship is responsible for creating itself and assigning targets to its
guns to be engaged. It also manuevers and keeps track of its location.

FROM MGrpMod IMPORT IDObj, ListObj;
FROM TARGET IMPORT Targetobj, ALL TargetStatusTYPE;
FROM GLOBALS IMPORT xyPoint;
FROM SEED IMPORT MRandomObj;
FROM SimMod IMPORT TriggerObj;
FROM GUN IMPORT GunObj;

TYPE

ShipStatusTYPE =(OK, Degraded);
EngagementStatusTYPE =(UnEngaged, Engaged, FullyEngaged, Down);
ShipProcessTYPE = (pldle, pRegistration, pAwaitingRegistration);

ManeuverStatusTYPE = (NoneScheduled, AwaitingManeuver, WaitingForCTMt,
Maneuvering);

ManeuverRecord = RECORD
DTime :REAL;

DCourse :REAL;

DSpeed :REAL;

Advance :REAL;

Transfer :REAL;

Duration :REAL;

NextManeuver :ManeuverRecord;

END RECORD;

ShipObj = OBJECT(IDObj);

Type STRING;
Status ShipStatusTYPE;
EngagementStatus :EngagementStatusTYPE;

Process ShipProcessTYPE;
StopManeuvering :BOOLEAN;

ManeuverStatus ManeuverStatusTYPE;
LastLocation xyPoinL;
TimeLastLocation REAL;
Course REAL;
Speed REAL;
NayError xyPoint;

67

NaySigma xyPoint;
Bias xcyPoint;
HQPtr ANYOBJ;
NumberOfGuns INTEGER;
GunList ListObj;
RegistrationComplete BOOLEAN;
NextManeuver ManeuverRecord;
ClearedToManeuver TriggerObj;

ASK METHOD CreateShip(IN InShipType STRING;
IN ShipID STRING;
IN InLocation xyPoint;
IN InCourse REAL;
IN InSpeed REAL;
IN ManFileName STRING;
IN InHQ ANYOBJ);

ASK METHOD InitializeShip;
ASK METHOD UpdateEngageinentStatus(IN ReAssignTargets BOOLEAN);
ASK METHOD UpdatePosition;
ASK METHOD ReceiveRegStatus(IN Succesful BOOLEAN;

IN InBias xyPoint;
IN OldGun Gunobj);

ASK METHOD RecManvGranted;
ASK METHOD HaltManeuvers;
ASK METHOD DropAli;
ASK METHOD EngageTarget(IN Target TargetObj);
ASK METHOD RegistrationFire;

TELL METHOD Maneuver(IN ManyOrder ManeuverRecord);

PRIVATE
rLocation xyPoint;
rCourse REAL;
rSpeed REAL;
rNextManeuver ManeuverRecord;
RandomGen MRandornobj;

END OBJECT;
END MODULE.

68

9/11/91
IMPLEMENTATION MODULE SHIP;

MODULE NAME: SHIP
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/23/91
LAST MODIFIED: 9/2/91

DESCRIPTION:

This is a module of the NGFS simulation that implements the Ship object.
Ship is responsible for creating itself and assigning targets to its
guns to be engaged. It also manuevers and keeps track of its location.

FROM MIOMod IMPORT MStreamObj,InputLog;
FROM IOMod IMPORT FileUseType(Input);
FROM TARGET IMPORT TargetObj, ALL TargetStatusTYPE;
FROM HQ IMPORT HQObj;
FROM GLOBALS IMPORT xyPoint, TooLong, ShellList, origin, LogEvents, EventLog;
FROM GUN IMPORT GunObj, ALL GunStatusTYPE;
FROM MathMod IMPORT SIN, COS, pi;
FROM SimMod IMPORT SimTime, Interrupt;

OBJECT ShipObj;

ASK METHOD CreateShip(IN InShipType : STRING;
IN ShipID : STRING;
IN InLocation : xyPoint;
IN InCourse : REAL;
IN InSpeed : REAL;
IN ManFileName : STRING;
IN InHQ : ANYOBJ);

VAR
ShipFile : MStreamObj;
ManFile : MStreamObj;
HQ : HQObj;
Gun : GunObj;
I : INTEGER;
TempManeuver : ManeuverRecord;
OldTempManeuver : ManeuverRecord;
Done BOOLEAN;
GunType : STRING;
tempstr : STRING;

BEGIN

HQPtr InHQ;
Type := InShipType;
ID ShipiD;
LastLocation InLocation;
Course InCourse;

69

Speed InSpeed;

NEW(ShipFile);
ASK ShipFile TO Open(InShipType+".SHP*, Input);
ASK ShipFile To SkipLines(9);
ASK ShipFile To ReadLnRealLOG(NavSigma.x, "NavSigma.x*);
ASK ShipFile To ReadLnRealLOG(NavSigma.y, "NavSigzna.y");
NEW(RandomGen);
ASK RandomGen To GetSeed("Ship');
ASK ShipFile TO ReadLnIntLOG (NuiberOfGuns, "NuxberofGuns");
ASK InputLog To WriteLn;
ASK ShipFile To SkipLines(3);
NEW(GunList);
FOR 1 : 1 To Nuinberof~uns

ASK InputLog TO WriteLnStr(

ASK ShipFile TO ReadLnStr(GunType);
tenipstr :
REPLACE(ternpstr,13-STRLEN(GunType) ,12,GunType);
ASK InputLog TO WriteLnStr(tenpstr);
ASK InputLog TO WriteLnStr(

NEW (Gun);
ASK GunList TO Add(Gun);
ASK Gun TO CreateGun(GunType,SELF,I);

END FOR;
ASK ShipFile To Close;
DISPOSE (ShipFile);

NEW (ManFile);
ASK ManFile TO Open(ManFileName, Input);
ASK ManFile To SkipLines(15);
ASK InputLog TO WriteLnStr(

tempstr:=
REPLACE(tempstr,13-STRLEN(ManFileName) ,12,ManFiieNane);
ASK InputLog TO WriteLnStr(tenpstr+" Maneuver File");
ASK InputLog TO WriteLnStr(

A S K I* * * * * t ~ t * * * * * * * t* t t * * * * * * * * * * * * * * * * T o)ie n
ASK InputLog To WriteLn;tr

"DeltaTime DeltaCourse DeltaSpeed Advance Transfer Duration");
ASK InputLog To WriteLn;

NEW(NextManeuver);
ASK ManFile To ReadReal (NextManeuver.DTime);
ASK InputLog To WriteReal (NextManeuver.DTime,7,2);
IF NextManeuver.DTrne <= 0.0

ASK InputLog TO WriteLn;
DISPOSE (NextManeuver);
NextManeuver NILREC;

ELSE
TenipManeuver NextManeuver;
Done :=FALSE;

WHILE NOT Done
IF TerpManeuver.DTime > 0.0

ASK ManFile To ReadRea1(TempManeuver.DCourse);

70

ASK InputLog TO WriteReal (TempManeuver.DCourse,13.2);
ASK ManFile TO ReadReal (TempManeuver .DSpeed);
ASK InputLog TO WriteReal (TempManeuver.DSpeed, 12,2);
ASK ManFile To ReadReal (TempManeuver .Advance);
ASK InputLog TO WriteReal (TempManeuver.Advance, 12,2);
ASK ManFile To ReadReal (TerpManeuver.Transfer);
ASK InputLog TO WriteReal (TempManeuver.Transfer, 11,2);
ASK ManFile TO ReadLnReal (TempManeuver. Duration);
ASK Input.Log TO WriteLnReal (TeipManeuver.Duration,9,2);
OldTempManeuver :=TempManeuver;
NEW (TempManeuver);
oldTempManeuver .NextManeuver := TempManeuver;
ASK ManFile TO ReadReal (TempManeuver .DTime);
ASK InputLog TO WriteReal (TezpManeuver.DTime,7,2);

ELSIF TemnpManeuver.DTime = 0.0
OldTempManeuver .NextManeuver =NILREC;

ASK InputLog TO WriteLn;
DISPOSE (TempManeuver);
Done :=TRUE;

ELSE
OldTemnpManeuver .NextManeuver =NextManeuver;

ASK InputLog TO WriteLn;
DISPOSE (TempManeuver);
Done TRUE;

END IF;
END WHILE;

END IF;
rNextManeuver :=NextManeuver;

ASK InputLog TO WriteLn;
ASK ManFile TO Close;
DISPOSE(ManFileJ;

rLocation :=LastLocation;

rCourse :=Course;

rSpeed Speed;

NEW (ClearedToManeuver);

END METHOD;

ASK METHOD InitializeShip;

VAR
Gun :GunObj;

BEGIN

Process :=pldle;
LastLocation :=rLccatiori;
Course :=rCourse;

Speed S rpeed;
StopManeuvering FALSE;
ManeuverStatus NoneScheduled;

71

NextManeuver := rNextManeuver;
Status :=OK;
EngagementStatus UnEngaged;
TirneLastLocation 0.0;
NavError.x ASK RandornGen Normal(0.0, NavSigma.x);
NavError.y ASK RandomGen Norinal(Q.0, NavSigrna.y);
Bias := origin;
RegistrationComplete :=FALSE;

Gun :=ASK GunList First));
WHILE Gun <> NILOBJ;

ASK Gun TO InitializeGun;
Gun :=ASK GunList Next(Gun);

END WHILE;

IF NextManeuver <> NILREC
TELL SELF TO Maneuver (NextManeuver);

END IF;

END METHOD;

I--- ------------------- ---I

ASK METHOD UpdateEngagernentStatus(IN ReAssignTargets BOOLEAN);

VAR
Gun : Gun~bi;
AllEngagedOrBroke BOOLEAN;
AllIdle :BOOLEAN;
HQ HQObj;

BEGIN
HQ :~HQPtr;
AllEngagedOrBroke TRUE;
AllIdle :=TRUE;
IF Process = pAwaitingRegisliration

ASK SELF TO RegistrationFire;
ELSE

Gun := ASK GunList First));
WHILE Gun <> NILOBJ

AllEngagedOrBroke := AllEngagedOrBroke AND (ASK Gun Status >= Busy);
AllIdle := AllIdle AND (ASK Gun Status =Idle);

Gun := ASK GunList Next(Gun);
END WHILE;
IF AllEngagedOrBroke

EngagemencStatus FullyEngaged;
ELSIF AllIdle

EngagementStatus :=UnEngaged;

ELSE
EngagementStatus Engaged;

END IF;
IF ReAssignTargets

TELL HQ TO AssignTargets;
END IF;

END IF;

72

END METHOD;

ASK METHOD UpdatePosition;

CONST
SpeedFac = 100.0/3.0;
DegRad = pi/180.0;

BEGIN
LastLocation.x := LastLocation.x + SIN(Course*DegRad)*Speed*SpeedFac*

(SimTime()-TimeLastLocation);
LastLocation.y := LastLocation.y + COS(Course*DegRad)*Speed*SpeedFac*

(SimTime()-TimeLastLocation);
TimeLastLocation := SimTime);

END METHOD;

ASK METHOD ReceiveRegStatus(IN Successful BOOLEAN;
IN InBias xyPoint;
IN OldGun GunObj);

VAR
Gun : GunObj;
GunFound : BOOLEAN;

BEGIN

IF LogEvents
IF Successful

ASK EventLog TO WriteStrinag
"ReceiveRegStatus Reg GOOD, BIAS, oldgunid = TRUE);

ELSE
ASK EventLog TO WriteString)
"ReceiveRegStatus Reg GOOD, BIAS, oldgunid = FALSE "1;

END IF;

ASK EventLog TO WriteReal(InBias.x,8,2);

ASK EventLog TO WriteReal(InBias.y,8,2);
ASK EventLog TO WriteLnStr(OldGun.ID);

END IF;
IF Successful

RegistrationComplete := TRUE;

Bias := InBias;
Process := pIdle;

ASK SELF TO UpdateEngaementStatus(TRUE);
ELSE

ASK SELF TO ReaistraticnFire;
END IF;

END METHOD;

ASK METHOD RecManvGranted;

un:GurOtj

11lGuns~lear

73

BEGIN

AllGunsClear := TRUE;
Gun := ASK GunList First();
WHILE Gun <> NILOBJ;

AllGunsClear := AllGunsClear AND Gun.ClearedToManeuver;
Gun := ASK GunList Next(Gun);

END WHILE;
IF LogEvents

ASK EventLog TO WriteString(ID+" RecManvGranted TIME
ASK EventLog TO WriteReal(SimTime(),8,2);
IF AllGunsClear

ASK EventLog TO WriteLnStr(" AllGunsClear= TRUE");
ELSE

ASK EventLog TO WriteLnStr(" AllGunsClear= FALSE");
END IF;

END IF;
IF AllGunsClear

IF LogEvents
ASK EventLog TO WriteLnStr(ID+" CTM Firing*);

END IF;

TELL ClearedToManeuver TO Trigger;
END IF;

END METHOD;

ASK METHOD HaltManeuvers;

VAR
Gun : GunObj;

BEGIN
StopManeuvering := TRUE;
IF LogEvents

ASK EventLog TO WriteString)ID-" halt MANEUVERS STMTIME :
ASK EventLog TO WriteLnReal(SimTime(,8,2);

END IF;
END METHOD;

ASK METHOD DropAll;

VAP
Gun : GunObj;

BEGIN
Process := pldle;
Gun := ASK GunList First();
WHILE Gun <> NILOBJ

ASK Gun TO DropAll;

74

END WHILE;

END METHOD;

I--I

ASK METHOD RegistrationFire;

VAR
Gun : GunObj;

BEGIN
Process := pRegistration;
Gun := ASK GunList Firsto;
WHILE (Gun <> NILOBJ)

IF Gun.Status = Idle
TELL Gun TO RegistrationFire;
Gun NILOBJ;

ELSE
Gun ASK GunList Next(Gun);
IF Gun = NILOBJ

Process := pAwaitingRegistration;
END IF;

END IF;
END WHILE;

END METHOD;

ASK METHOD EngageTarget(IN Target : TargetObj);

VAR
Gun : GunObj;
Assigned : BOOLEAN;

BEGIN

IF LogEvents
ASK EventLog TO WriteLnStr("START SHIP ENGAGE TARGET SHIPID ="+ID);

END IF;
Gun := ASK GunList First();
WHILE Gun <> NILOBJ

IF ASK Gun Status = Idle
ASK Gun TO EngageTarget(Target);
IF LogEvents

ASK EventLog TO WriteString(Target.ID+
" assigned to "+Gun.ID+" at simtime =

ASK EventLog TO WriteLnReal(SimTime(),8,2);
END IF;
Gun := NILOBJ;

Assigned := TRUE;

ELSE

Gun := ASK GunList Next(Gun);

END IF;

END WHILE;

IF NOT Assigned

75

OUTPUT(ID," was told to engage a target when ft had no guns available*);
IF LogEvents

ASK EventLog TO WriteLnStr(ID+
' was told to engage a target when it had no guns available");

END IF;
END IF;

END METHOD;

TELL METHOD Maneuver(IN ManOrder : ManeuverRecord);

CONST
DegRad = pi/180.0;

VAR
Gun : GunObj;

BEGIN
ManeuverStatus := AwaitingManeuver;
WAIT DURATION ManOrder.DTime
ON INTERRUPT

ManeuverStatus NoneScheduled;
TERMINATE;

END WAIT;
IF StopManeuvering

ManeuverStatus NoneScheduled;
TERMINATE;

END IF;
IF LogEvents

ASK EventLog TO WriteString(ID+" REQUESTING A MANEUVER TIME =

ASK EventLog TO WriteLnReal(SimTime(),8,2);
END IF;
Gun := ASK GunList First(;
WHILE Gun <> NILOBJ

TELL Gun RequestManeuver;
Gun := ASK GunList Next(Gun);

END WHILE;
ManeuverStatus := WaitingForCTMt;
WAIT FOR ClearedToManeuver TO Fire;
ON INTERRUPT

ManeuverStatus := NoneScheduled;
Gun := ASK GunList First();
WHILE Gun <> NILOBJ

ASK Gun TO CancelManeuver;
Gun := ASK GunList Next(Gun;

END WHILE;
TERMINATE;

END WAIT;
ManeuverStatus := Maneuvering;
ASK SELF TO UpdatePosition;
IF LogEvents

ASK EventLog TO WriteString(ID+" COMMENCING MANEUVER TIME =

ASK EventLog TO WriteLnReal(SimTime(),8,21;
ASK EventLog TO WriteString(w POSITION x =

ASK EventLog TO WriteReal(LastLocation.x,8,2);

76

ASK Eventiog TO WriteString(" y
ASK EventLog TO WriteLnReal(LastLocation.y,8,2);
ASK EventLog TO WriteString(" beginning COURSE
ASK EventLog TO WriteReal(Course,8,2);
ASK EventLog TO WriteString(* beginning speed
ASK EventLog TO WriteLnReal(Speed,8,2);

END IF;
LastLocation.x :=LastLocation.x + SIN(Course*DegRad) *ManOrder.Advance

+ COS (Course*DegRad) *ManOrder.Transfer;
LastLocation.y LastLocation.y + COS(Course*DegRad) *ManOrder.Advance

- SIN(Course*DegRad) *Manorder.Transfer;
* Course := Course + ManOrder.DCourse;

IF Course >= 360.0
Course := Course - 360.0;

ELSIF Course <= 0.0
Course := Course + 360.0;

END IF;
Speed := Speed + ManOrder.DSpeed;
IF Speed <= 0.0

Speed :=0.0;
END IF;
WAIT DURATION ManOrder.Duration
ON INTERRUPT

StopManeuvering := TRUE;
END WAIT;

IF LogEvents
ASK EventLog TC WriteString(ID+" COMPLETED MANEUVER TIME
ASK EventLog TO WriteLnReal(SinTime(),8,2);
ASK EventLog TO WriteString(" POSITION x
ASK EventLog TO WriteReal(LastLocation.x,8,2);
ASK EventLog To WriteString(U y =

ASK EventLog TO WriteLnReal (LastLocation.y,8,2);
ASK EventLog TO WriteString(" final COURSE
ASK EventLog TO WriteReal (Course,8,2);
ASK EventLog TO WriteString(" final speed
ASK EventLog TO WriteLnReal (Speed,8,2);

END IF;
TimeLastLocation := SimTimefl;
Gun :zASK GunList First();
WHILE Gun <> NILOBJ

ASK Gun TO CancelManeuver;
Gun := ASK GunList Next.(Gun);

END WHILE;

IF NOT StopManeuvering
NextManeuver := NextManeuver .NextManeuver;
IF (NextManeuver <> NILP.EC)

TELL SELF TO Maneuver(NextManeuver);
ManeuverStatus =AwaitingManeuver;

ELSE
ManeuverStatus NoneScheduled;

END IF;

END IF;

END METHOD;

END OBJECT;

END MODULE.

77

9/11/91

DEFINITION MODULE GUN;

I----------------- ----------------------

MODULE NAME: GUN
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/23/91
LAST MODIFIED: 8/1/91

DESCRIPTION:

This is a module of the NGFS simulation that defines a Gun located aboard a
ship. A gun can be told to engage a target, register fire, or suspend
operations to allow a manuever.

FROM MGrpMod IMPORT IDObj, ComponentListObj;
FROM GLOBALS IMPORT xyPoint;
FROM SHELL IMPORT Shellobj;
FROM TARGET IMPORT Targetobj, ALL TargetStatusTYPE, ALL SpotKindTYPE;
FROM MIOMod IMPORT MStrearnObj;
FROM IOMod IMPORT FileUseType (Input);
FROM StatMod IMPORT SREAL;
FROM SEED IMPORT MRandomobj;
FROM SimMod IMPORT Triggerobj;

TYPE
GunStatusTYPE =(Idle, Busy, Misfire, BrokeSoft, BrokeHard);
GunProcessTYPE =(pldle, pRegistration, pFFE, pSpotFire);
WaitReasonTYPE =(Duration, SpotCoins, Firing, Maneuver, None);

MagazineTYPE =RECORD;

ShellType :STRING;
ShellPtr :ShellObj;

Next :MagazineTYPE;

END RECORD;

GunObj = OBJECT(IDObj)

Type :STRING;

Status :GunStatusTYPE;

Hot BOOLEAN;
Process :GunProcessTYPE;

Assigned :BOOLEAN;

EnableRepair :BOOLEAN;

RepairTrigger :Triggerobj;

AlreadyTriggeredRepair : BOOLEAN;
SpotGood :BOOLEAN;

WaitReason :WaitReasonTYPE;

ManeuverRequest :BOOLEAN;

ClearedToManeuver :BOOLEAN;

SpotterCommns :Triggerobj;

ManeuverComplete :Triggerobj;

RequestoropAll BOOLEAN;
SpotKind :SpotKindTYPE;

FOV INTEGER;
Target :TargetObj;

78

Airnpoint xyPoint;
LongAimpoint xyPoint;
ShortAimpoint xyPoint;
TOF REAL;
NumberFFERounds INTEGER;
ShotsFired INTEGER;
FiringRate SREAL;
AveFiringRate SREAL;
CycleTime REAL;
MaxFlightTime REAL;
ShipPtr ANYOBJ;
NuniRegRounds INTEGER;
RegRange REAL;
RegShell STRING;
RegRoundsTracked INTEGER;
PreferredShell Shellobj;
ShotsBeforeHot INTEGER;
Sigma xyPoint;
RangeFactor REAL;
Magazine MagazineTYPE;
NumberOfComponents: INTEGER;
ComponentList ComponentLiStObi;
RandornGen MRandamObj;

ASK METHOD CreateGun(IN GunType STRING;
IN InShipPtr ANYOBJ;
IN InGunNun INTEGER);

ASK METHOD InitializeGun;
ASK METHOD ReceiveBDA(IN HitThisFFE BOOLEAN;

IN TargetStatus TargetStatusTYPE);
ASK METHOD ReceiveSpotResult(IN SpotResult BOOLEAN;

IN Correction xyPointj;
ASK METHOD TrackRound(IN ImpactPoint xyPoint);
ASK METHOD CancelManeuver;
ASK METHOD EngageTarget(IN InTarget TargetObj);
ASK METHOD TerrnPrep(IN InStatus :GunStatusTYPE;

IN ReAssignTargets :BOOLEAN;
IN InProcess :GunProcessTYPE);

ASK METHOD DropAli;
ASK METHOD CalRunStats(IN Rep INTEGER;

IN StoppingPercentage REAL;
IN InvNormalCl REAL;
OUT RPM REAL;
OUT GunDone BOOLEAN);

TELL METHOD Fire;
TELL METHOD FFE;
TELL METHOD SpotiFire;
TELL METHOD RegistrationFire;
TELL METHOD RequestManeuver;
TELL METHOD Repair;

END OBJECT;

END MODULE.

79

9/11/91
IMPLEMENTATION MODULE GUN;

MODULE NAME: GUN
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/24/91
LAST MODIFIED: 9/1/91

DESCRIPTION:

This is a module of the NGFS simulation that implements a Gun located
aboard a ship. A gun can be told to engage a target, register fire, or
suspend operations to allow a maneuver.

-------- ---I

FROM SirnMod IMPORT Interrupt, SimTime;
FROM GLOBALS IMPORT xyPoint, TooLong, origin, ShellList, Distance, SpotDeltaT,

EventLog, LogEvents;
FROM TARGET IMPORT TargetObj, ALL SpotKindTYPE, ALL TargetStatusTYPE;
FROM MGrpMod IMPORT ComnponentListObj, Componentobj;
FROM MIOMod IMPORT MStreamObj, InputLog;
FROM lOMod IMPORT FileUseType(Input);
FROM SHELL IMPORT Shellobj, RangeFunction;
FROM SHIP IMPORT Shipobj, ALL EngagementStatusTYPE;
FROM StarMod IMPORT RStatObj;
FROM MathMod IMPORT SQRT;

OBJECT GunObj;

ASK METHOD CreateGun(IN GunType :STRING;

IN lnShipPtr ANYOBJ;
IN InGunNum :INTEGER);

VAR
GunFile :MStreamObj;

Ship :ShipObj;

Shell :ShellObj;

ShellKind :STRING;

MagShell :MagazineTYPE;

NumShellslnMag : INTEGER;
I :INTEGER;

FailProb :REAL;

MTTRC :REAL;

MTTRH :REAL;

Description : STRINO;
Component : Componentobj;

BEGIN
Type :=GunType;
ShipPtr := InShipPtr;

80

Ship :=ShipPtr;
ID :=Ship.ID;
INSERT(ID, 20, "GUN-");
INSERT (ID, 14, INTTOSTR (InGunNum));

NEW(GunFile);
ASK GunFile TO Open(GunType+".GUN" Input);
ASK GunFile To SkipLines(9);
ASK GunFile TO ReadLnRealLOG(Sigma.x, "Sigma.x");
ASK GunFile To ReadLnRealLOG(Sigma.y, "Sjgma.y");
ASK GunFile To ReadLnRealLOG(CycleTime, "CycleTime");

*ASK GunFile To ReadLnRealLOG(MaxFlightTime, "MaxFlightTime");
ASK GunFile TO ReadLnIntLOG (NumRegRounds, NuxnRegRounds');
ASK GunFile TO ReadLnRealLOG (RegRange, RegRange*);
ASK GunFile To ReadLnIntLOG(ShotsBeforeHot, "ShotsBeforeHotfl;
ASK GunFile To ReadLnP-alLOG(RangeFactor,"RangeFactor");
NEW(RandomGen);
ASK RandoinGen TO GetSeed("Gun");
ASK InputLog TO Writelnt(RandomGen.originalSeed,1O);
ASK InputLog TO WriteLnStr(" Nay error random number seed");
ASK GunFile TO SkipLines(1);
ASK GunFiile TO ReadLnlntiNumShellSlnMag);
ASK GunFile TO SkipLines(3);
NEW (MagShell);
Magazine :=MagShell;
ASK GunFile TO ReadString(ShellKind);
ASK GunFile To ReadString(MagShell.ShellType);
ASK GunFile TO SkipLines(1);
MagShell.ShellPtr :=ASK ShellList PtrTo(ShellKind, FALSE);
IF MagShell.ShellPtr = NILOBJ

NEW) Shell);
ASK Shell TO CreateShell (ShellKind);
ASK ShellList TO Add(Shell);
MagShell.ShellPtr : Shell;

END IF;

FOR I :=2 TO NumShellslnMag
NEW(Magzhell.Next);
Mag~hell := MagShell.Next;
ASK GunFile TO ReadString(ShellKind);
ASK GunFile TO ReadString(MagShell.ShellType);
ASK GunFile TO SkipLines(1);
MagShell.ShellPtr :=ASK ShellList PtrTo(ShellKind, FALSE);
IF MagShell.ShellPtr =NILOBJ

NEW) Shell);
ASK Shell To CreateShell (ShellKind);
ASK ShellList TO Add(Shell);
MagShell.ShellPtr :=Shell;

END IF;
END FOR;
ASK GunFile To SKipLines~i);
ASK InputLog TO WriteLn;
ASK GunFile TO ReadLnIntLOG(NumberOfComponents,"Number of Gun Components");
ASK InputLog TO WriteLn;
ASK GunFile TO SkipLines(3);
NEW (ComponentList)
ASK InputLog TO WriteLnStr)

FaiProb MT'RC MT1RH Seed Description");

81

FOR I :=1 TO NuniberOfComponents
ASK GunFile TO ReadReal(FailProb);
ASK InputLog TO WriteReal(FailProb,10,4);
ASK GunFile TO ReadReal(MTTRC);
ASK InputLog To WriteReal(MTTRC,10,2);
ASK GunFile TO ReadReal(MTTRH);
ASK InputLog TO WriteReal(MTTRH,10.2);
ASK GunFile TO ReadLine(Description);
NEW (Component);
ASK Component TO CreateComponent(Description,FailProb, MTTRC,

MTTRH);
ASK Component. RandomGen TO GetSeed (Gun");
ASK InputLog TO Writelnt(ASK Component RandoinGen.originalSeed,12);
ASK InputLog TO WriteLnStr(Description);
ASK ComponentList TO Add(Cornponent);

END FOR;
NEW(SpotterComms);
NEW (ManeuverComplete);
NEW(RepairTrigger);
ASK GunFile TO Close;
DISPOSE (GunFile);

END METHOD;

ASK METHOD InitializeGun;

BEGIN

Status Idle;
Process pldle;
Hot :=FALSE;
RequestDropAll :=FALSE;
Assigned :=FALSE;
EnableRepair :=FALSE;
SpotGood FALSE;
SpotKind Bracket;
WaitReason :=None;
ManeuverRequest :=FALSE;
ClearedToManeuver :=FALSE;
FOV :=0;
Target :=NILOBJ;
Aimpoint :=origin;
LongAimpoint origin;
ShortAimpoint origin;
TOF :=0.0;
ShotsFired :=0;
RegRoundsTracked :=0;
PreferredShell :=NILOBJ;
ASK GETMONITOR(FiringRate,RStatObjl TO Reset;

END METHOD;

82

ASK METHOD ReceiveBDA(IN HitThisFFE BOOLEAN;
IN TargetStatus TargetStatusTYPE);

BEGIN
SpotGood := HitThisFFE;
TELL SpotterComms TO Trigger;

END METHOD;

ASK METHOD ReceiveSpotResult(IN SpotResult BOOLEAN;
IN Correction xyPoint);

BEGIN
SpotGood := SpotResult;
IF NOT SpotGood

Aimpoint.x := Ainpoint.x + Correction.x;
Aimpoint.y Aimpoint.y + Correction.y;

END IF;
TELL SpotterComms TO Trigger;

END METHOD;

--- ----------------I

ASK METHOD TrackRound(IN ImpactPoint : xyPoint);

BEGIN

LongAimpoint.x LongAimpcint.x + ImpactPoint.x;
LongAimpoint.y LongAimpoint.y + ImpactPoint.y;
Re-.RoundsTracked := RegRoundsTracked + 1;

END METHOD;

ASK METHOD CancelManeuver;

BEGIN
ManeuverRequest := FALSE;
ClearedToManeuver := FALSE;
TELL ManeuverComplete TO Trigger;
IF LogEvents

ASK EventLog TO WriteString(ID+" cancel maneuver TIME =

ASK EventLog TO WriteLnReal(SimTime(),8,2);
END IF;

END METHOD;

{---

ASK METHOD EngageTarge-(IN InTarget : TargetObj);

VAR
MagShell MagazineTYPE;
ErrMsg STElN7;

PreferredSheil'Type ; STRIN:-

83

Ship ShipObj;

BEGIN
Ship :=ShipPtr;
Status Busy;
Target InTarget;
IF LogEvents

ASK EventLog TO WriteString(ID+* begin GUN ENGAGE TARGET TIME
ASK EventLog TO WriteReal(SimTime(),8..2);
ASK EventLog TO WriteLnStr(" target = +Target.ID);

END IF;
ASK Ship TO UpdateEngagementStatus(FALSE);
ASK Target TO UpdateAssigned(TRUE, SELF);
PreferredShellType :=Target. PreferredShell;
MagShell := Magazine;
WHILE MagSheli.SheilType <> PreferredSheiiType

MagShell := MagShell.Next;
IF MagSheli = NILREC

OUTPUT(Target.ID," PreferredShellType ",PreferredShellType," not in
"magazine of gun ",ID);

IF LogEvents
ASK EventLog TO WriteLnStr(Target.ID+" PreferredShellType '+

PreferredSheiiType+" not in magazine of gun "+ID);
END IF;

MagShell :=Magazine;
PreferredShellType :=MagShell .Shell~ype;
OUTPUT(" Substituting ",PreferredShellType);
IF LogEvents

ASK EventLog TO WriteLnStr(" Substituting *+PreferredSheilType);
END IF;

END IF;
END WHILE;
PreferredShell :=MagShell.ShellPtr;
SpotKind :=Target .NorznaiSpotKind;

TELL SELF TO SpotFire;

END METHOD;

ASK METHOD TermPrep(IN InStatus :GunStatusTYPE;
IN ReAssignTargets :BOOLEAN;
IN InProcess :GunProcessTYPE);

VAR
Ship :ShipObj;
TempTarget :Targetobj;

BEGIN
Ship :=ShipPtr;
RequestDropAll :=FALSE;
TempTarget :=Target;
Process := pldle;
IF Target <> NILOBJ (nc target if registration fire

ASK Target TO UpdateAssigned(FALSE,NILOBJj;
END IF;Status :=InStatus;
Target := NILOBJ;
IF ((InProcess = pFFE) OR (InProcess = pSpotFire) AND

84

(Ship. EngagementStatus < FullyEngaged)
ASK Ship TO EngageTarget(TempTarget);

END IF;
IF ManeuverRequest

IF NOT ClearedToManeuver
ClearedToManeuver := TRUE;
ASK Ship TO RecManvGranted;

END IF;
END IF;

IF ((ASK RepairTrigger NumWaiting() <> 0) AND
£ (NOT AireadyTriggeredRepair)

TELL RepairTrigger TO
Trigger;

AlreadyTriggeredRepair := TRUE;
ELSE

EnableRepair := TRUE;
END IF;
ASK Ship TO UpdateEngagementStatus(ReAssignTargets);

END METHOD;

ASK METHOD DropAll;

BEGIN
IF WaitReason = Firing

RequestDropAll := TRUE;
ELSIF ManeuverRequest

ASK ManeuverComplete TO InterruptTrigger;
ELSIF WaitReason = SpotComms

ASK SpotterComms TO InterruptTrigger;
ELSE

CASE Process
WHEN pFFE:

Interrupt(SELF,"FFE");
WHEN pSpotFire:

Interrupt(SELF,"SpotFire");
OTHERWISE

(do nothing

END CASE;
END IF;

END METHOD;

{(---I

ASK METHOD CalRunStats(IN Rep INTEGER;
IN StoppingPercentage REAL;
IN InvNormalCl REAL;

OUT RPM REAL;
OUT GunDone BOOLEAN);

BEGIN

IF Status >= BrokeSoft

FiringRate := FLOAT(ShotsFired)/SimTime();
ELSIF TOF <> 0.0

FiringRate :z FLOAT(ShotsFired)/TOF;

85

ELSE
FiringRate := 0.0;

END IF;
RPM := FiringRate;
AveFiringRate : FiringRate;
IF Rep >= 10

GunDone := ((StoppingPercentage*ASK GETMONITOR(AveFiringRate,RStatObj)
Mean)) >= (2.0*InvNormalCI*

(ASK GETMONITOR(AveFiringRate,RStatObj) StdDev(/
SQRT(FLOAT(Rep)-1.0))));

ELSE
GunDone := FALSE;

END IF;

END METHOD;

TELL METHOD Fire;

VAR
Shell SbellObj;

Ship ShipObj;
Failure BOOLEAN;
ActualAimpoint xyPoint;

MTTR REAL;
Description STRING;
Range REAL;

BEGIN

IF LogEvents

ASK EventLog TO WriteString(ID " JUST FIRED AT f);
ASK EventLog TO WriteLnReal(SimTime0),8,2);

END IF;

Ship := ShipPtr;
ShotsFired := ShotsFired + 1;
Hot := ShotsFired > ShotsBeforeHot;
ASK ComponentList TO SampleForFailure(Hot, Failure, MTTR, Description);
IF NOT Failure

Shell := CLONE(PreferredShell);
ASK Shell.ComponentList TO SampleForFailure(Hot, Failure, MTTR,

Description);
IF NOT Failure

ASK Ship TO UpdatePosition;

IF Process = pRegistration (THIS IS A REGISTRATION ROUND)

Range RegRange;
ELSE

Range Distance(ASK Ship LastLocation, ASK Target Location);
END IF;
ActualAimpoint.x ASK RandomGen Normal(Aimpoint.x,

RangeFunction(Sigma.x, -1.0, Range));
ActualAimpoint.y ASK RandomGon Normal(Aimpoint.y,

RangeFunction(Sigma.y, -1.0, Range));
TELL Shell TO FlyToTarget(Target, ActualAimpoint, Range, SELF);

ELSE
(collect stats on shell failure!
DISPOSE;Shell);

86

END IF;

ELSE
(collect stats on gun failure)

END IF;
WAIT DURATION CycleTime;
END WAIT;
TOF := SimTime[);

IF Failure
IF (MTTR > 0.0) AND (MTTR <= TooLong)

IF LogEvents
ASK EventLog TO WriteString(ID+" FAILED SOFT TIME =
ASK EventLog TO WriteLnReal(SimTime(),8,2);

END IF;
Status := BrokeSoft;
TELL SELF TO Repair IN MTTR;

ELSIF MTTR > TooLong
IF LogEvents

ASK EventLog TO WriteString(ID+" FAILED HARD TIME
ASK EventLog TO WriteLnReal(SimTime(),8,2);

END IF;
Status := BrokeHard;
TELL SELF TO Repair IN MTTR;

ELSE
IF LogEvents

ASK EventLog TO WriteString(ID+" MISFIRE TIME
ASK EventLog TO WriteLnReal(SimTime(),8,2);

END IF;
Status := Misfire;

END IF;
IF LogEvents

ASK EventLog TO WriteString(ID+" MTTR
ASK EventLog TO WriteLnReal(MTTR,8,2);

END IF-
EnableRepair := FALSE;
AlreadyTriggeredRepair z= FALSE;

END IF;

END METHOD;

TELL METHOD FFE;

VAR
TargetStatus TargetStatusTYPE;
ComStartDelay REAL;
Ship ShipObj;
NumRounds INTEGER;

BEGIN
Ship := ShipPtr;

Process := pFFE;
NumRounds := Target.RndsPerFFE;
IF LogEvents

ASK EventLog TO WriteString(*HELLO FROM FFE GUNID ="+ID+
ROUNDS TO FIRE =

87

ASK EventLog TO WriteLnInt(NumRounds,S);
ASK EventLog TO WriteString(*FIRING AT "+Target.ID+* time =
ASK EventLog TO WriteLnReal(SimTime(),8,2);

END IF;
IF ManeuverRequest

IF NOT ClearedToManeuver
WaitReason := Maneuver;
ClearedToManeuver := TRUE;
ASK Ship RecManvGranted;

END IF;
WAIT FOR ManeuverComplete TO Fire;
END WAIT;
ClearedToManeuver := FALSE;
WaitReason := None;
END IF;

ASK Target TO StandbyForFFE;
REPEAT

NumRounds := NumRounds - 1;
WaitReason := Firing;

WAIT FOR SELF TO Fire
END WAIT;
WaitReason := None;
IF ReqaestDrcpAll

ASK SELF TO TermPrep(Idle, TRUE, pIdle);
TERMINATE;

END IF;
UNTIL (NumRounds = 0) OR (Status >= BrokeSoft);
ComStartDelay := TOF + MaxFlightTime - SimTime(;
IF ComStartDelay > 0.0

WaitReason := Duration;
WAIT DURATION ComStartDelay
ON INTERRUPT

WaitReason := None;
ASK SELF TO TermPrep(Idle,TRUE,pldle);
TERMINATE;

END WAIT;
WaitReason := None;

END IF;
TELL Target TO ReportBDA;
WaitReason := SpotComms;
WAIT FOR SpotterComms TO Fire
ON INTERRUPT

WaitReason := None;
ASK SELF TO TermPrep(Idle,TRUE,pIdle);
TERMINATE;

END WAIT;
WaitReason := None;

IF (ASK RepairTriggpr NumWaiting))) <> 0
IF LogEvents

ASK EventLog TO WriteString(ID+
" FFE TRIGGERING REPAIR TRIGGER TIME =

ASK EventLog TO WriteLnReal(SimTime0),8,2);
END IF;
TELL RepairTrigger TO Trigger;
AlreadyTriggeredRepair := TRUE;

ELSE
EnableRepair := TRUE;

88

END IF;
IF Target.Status = Destroyed

IF LogEvents
ASK EventLog TO WriteLnStr(ID+* FFE SAYS TARGET DESTROYED*);

END IF;

IF Status <= Misfire

Status := Idle;
END IF;
TermPrep(Status,TRUE,pIdle);
TERMINATE;

ELSE
CASE Status
WHEN BrokeHard:

TermPrep(BrokeHard,TRUE,pFFE);
TERMINATE;

WHEN BrokeSoft:
{ do nothing I

OTHERWISE {?Idle,Busy,?Misfirej
IF SpotGood

TELL SELF TO FFE;
ELSE

SpotKind := ASK Target NormalSpotKind;
TELL SELF TO SpotFire;

END !F;
END CASE;

END IF;

IF LogEvents
ASK EventLog TO WriteString(ID+" END ffe TIME = ");
ASK EventLog TO WriteLnReal1SimTime{),8,2);

END IF;

END METHOD;

TELL METHOD SpotFire;

VAR
Ship ShipObj;
HaltFiring BOOLEAN;
ComStartDelay : REAL;

BEGIN
IF LogEvents

ASK EventLog TO WriteString(ID+* START OF SpotFire SIMTIME =

ASK EventLog TO WriteLnReal(SimTime(),8,2);
END IF;
Ship := ShipPtr;

Status Busy;
Process := pSpotFire;
Aimpoint := Ship.Bias:

CASE SpotKind
WHEN Bracket..BracketLong:

IF LogEvents
ASK EventLog TO WriteLnStr("BRACKET LON2");

89

END IF;
IF SpotGood AND (FOV = Target.FOV)

SpotKind := Direct;

TELL SELF TO SpotFire;
TERMINATE;

END IF;
Aimpoint.y := Aimpoint.y + Target.ECR*Target.ECRLong;

WHEN BracketShort:
IF LogEvents

ASK EventLog TO WriteLnStr("BRACKET SHORT");
END IF;
Aimpoint.y := Aimpoint.y - Target.ECR*Target.ECRLong;

OTHERWISE
IF LogEvents

ASK EventLog TO WriteLnStr("DIRECT SPOT*);
END IF;

END CASE;
SpotGood := FALSE;

REPEAT
IF ManeuverRequest

IF NOT ClearedToManeuver
WaitReason := Maneuver;
ClearedToManeuver := TRUE;
ASK Ship RecManvGranted;

END IF;
WAIT FOR ManeuverComplete TO Fire;
END WAIT;
ClearedToManeuver := FALSE;
WaitReason := None;

END IF;
ASK Target TO StandbyForSpot(SpotKind);
WaitReason := Firing;

WAIT FOR SELF TO Fire;
END WAIT;
WaitReason := None;

IF RequestDropAll
ASK SELF TO TermPrep(Idle, TRUE, pldle);
TERMINATE;

Et IF;
CASE Status
WHEN Idle..Busy:

ComStartDelay := TOF + MaxFlightTime - SimTime();
IF ConStartDelay > 0.0

WaitReason := Duration;
WAIT DURATION ComStartDelay
ON INTERRUPT

WaitReason := None;

ASK SELF TO TermPrep(Idle,TRUE,pIdle);
TERMINATE;

END WAIT;
WaitReason := None;

END IF;
TELL Target TO ReportSpotResult;
WaitReason := SpotComms;
WAIT FOR SpotterComms TO Fire
ON INTERRUPT

WaitReason := None;

90

ASK SELF TO TermPrep(Icfle,TRUE,pldle);
TERMINATE;

END WAIT;
WaitReason :=None;
IF Target.Status = Destroyed

TermPrep (Idle,TRUE,ple);
TERMINATE;

END IF;
WHEN BrokeHard:

IF (ASK RepairTrigger NurnWaitingi)) <> 0

IF LogEvents
ASK EventLog TO WriteString(ID+
*REPAIR TRIGGERED BY SPOTFIRE TIME hard fail=)

ASK EventLog TO WriteLnReal(SimTime() ,8,2);
END IF;

TELL RepairTrigger TO Trigger;
AlreadyTriggeredRepair := TRUE;

ELSE
EnableRepair := TRUE;

END IF;
ASK SELF TO TermPrep(Broke-ard,TRUE,pSpotFire);
TERMINATE;

WHEN Misfire:
fdo nothing

WHEN BrokeSoft:
IF (ASK RepairTrigger NulWaitingo) <> 0

IF LogEvents
ASK EventLog TO WriteString(ID+
"REPAIR TRIGGERED BY SPOTFIRE TIME soft fail=)

ASK EventLog TO WriteLnRea(SinTineo),8,2);
END IF;

TELL RepairTrigger TO Trigger;
AireadyTriggeredRepair :=TRUE;

ELSE
EnableRepair :z TRUE;

END IF;
TERMINATE;

END CASE;
UNTIL SpotGood;

CASE SpotKind
WHEN Bracket. .BracketLong:

LongAimpoint := Aimpoint;
SpotKind := BracketShort;
TELL SELF TO SpotFire;

WHEN BracketShort:
ShortAirnpoint :z Aimpoint;
Aimpointrc : (LongAirnpoint-x +ShortAimnpoint.x)/2.0;
Aimpoint.y :=(LongAimpoint.y + ShortAimpoint.y)/2.0;
SpotGood := TRUE;

FOV : Target.FOV;
TELL SELF TO FFE;

91

WHEN Direct:
SpotGood := TRUE;
FOV :=Target.FOV;
TELL SELF TO FFE;

END CASE;

IF LogEvents
ASK EventLog TO WriteStrirxg(ID+" END spotfire TIME
ASK EventLog TO WriteLnReal(SimTine(),8,2);

END IF;

END METHOD;

TELL METHOD RegistrationFire;

VAR
Ship :Ship~bi;

Bias :xyPoint;

I :INTEGER;

Successful : BOOLEAN;
CornStartDelay : REAL;

BEGIN

IF LogEvents
ASK EventLog TO WriteString(ID. start gun registration TIME
ASK EventLog TO WriteLnReal(SimTine(),8,2);

END IF;
Ship := ShipPtr;
Status :=Busy;
Process :=pRegistration;

Target :=NILOBJ;
ASK Ship TO UpdateEngagernentStatus(FALSE);
Aimpoint := Ship.NavError;
PreferredShell := Magazine.SheilPtr;
RegRoundsTracked := 0;
I .= 0;
REPEAT

IF ManeuverRequest
IF NOT CiearedToManeuver
WaitReason := Maneuver;
ClearedToManeuver := TRUE;
ASK Ship RecManvGranted;

END IF;
WAIT FOR ManeuverComplete TO Fire;
END WAIT;
ClearedToManeuver := FALSE;
WaitReason := None;

END IF;
WaitReason := Firing;
WAIT FOR SELF TO Fire;
END WAIT;
WaitReason := None;
IF RequestDropAll

ASK SELF TO TermPrep(Idie, TRUE, pldle);

92

TERMINATE;
END IF;
IF Status = Busy

I:=I+1;
END IF;

UNTIL (I = NumRegRounds) OR (Status >= BrokeSoft);
CASE Status
WHEN Busy:

ComStartDelay := TOF + 2.0*MaxFlightTime - SimTime(;
IF ComStartDelay > 0.0

WaitReason := Duration;
WAIT DURATION CornStartDelay
ON INTERRUPT

f too lPte to stop fall of shot so do nothing)
END WAIT;
WaitReason := None;

END IF;
IF (RegRoundsTracked >= ROUND(0.75*FLOAT(NumRegRounds))) AND

(RegRoundsTracked > 0)
Bias.x := Aimpoint.x - LongAimpoint.x/FLOAT(RegRoundsTracked);
Bias.y := Aimpoint.y - LongAimpoint.y/FLOAT(RegRoundsTracked);
Successful := TRUE;

END IF;
Status := Idle;

OTHERWISE
IF (ASK RepairTrigger NumWaiting)) <> 0

TELL RepairTrigger TO Trigger;

IF LogEvents
ASK EventLog TO WriteString(ID+

" REPAIR TRIGGERED BY Registration TIME =

ASK EventLog TO WriteLnReal(SimTime(),8,2);
END IF;

AlreadyTriggeredRepair := TRUE;
ELSE

EnableRepair := TRUE;

END IF;
END CASE;

LongAimpoint := origin;
ASK SELF TO TermPrep(Status, FALSE, pIdle);
ASK Ship TO ReceiveRegStatus(Successful, Bias, SELF);
IF LogEvents

ASK EventLog TO WriteString(ID+" END GUN registration TIME = ");
ASK EventLog TO WriteLnReal(SimTime(),8,2);

END IF;

END METHOD;

TELL METHOD RequestManeuver;

VAR
Ship : ShipObj;

BEGIN

93

IF LogEvents
ASK EventLog TO WriteString(ID+

HAS BEEN REQUESTED TO GRANT A MANEUVER AT SIM TIME =

ASK EventLog TO WriteLnReal(SimTime(),8,2);

ASK EventLog TO WriteString(*CURRENT STATUS IS ");
ASK EventLog TO WriteLnInt(ORD(Status),5);
ASK EventLog TO WriteString("CURRENT PROCESS IS ");
ASK EventLog TO WriteLnInt(ORD(Process),5);

END IF;
Ship := ShipPtr;
ManeuverRequest := TRUE;
CASE Status
WHEN Busy..Misfire:

f do nothing }
OTHERWISE

ClearedToManeuver := TRUE;
ASK Ship TO RecManvGranted;
IF LogEvents

ASK EventLog TO WriteString(ID+" GRANTS MANEUVER REQUEST time =
ASK EventLog TO WriteLnReal(SimTime(),8,2);

END IF;
END CASE;

END METHOD;

TELL METHOD Repair;

VAR
Ship ShipObj;

BEGIN

Ship := ShipPtr;
IF NOT EnableRepair

IF LogEvents
ASK EventLog TO WriteString(ID+" REPAIR BEAT PROCESS SIMTIME
ASK EventLog TO WriteLnReal(SimTime(),8,2);

END IF;

WAIT FOR RepairTrigger TO Fire;

IF LogEvents
ASK EventLog TO WriteString(ID+

* PROCESS IS enabling RepairTrigger simtime =);
ASK EventLog TO WriteLnReal(SimTimef),8,2);

END IF;

END WAIT;

END IF;

94

IF LogEvents
ASK EventLog TO WriteString(ID+* REPAIRED AT TIME
ASK EventLog TO WriteLnReal(SimTimne(),8,2);

END IF;
IF ClearedToManeuver

IF LogEvents
ASK EventLog TO WriteString(ID+" WAITING FOR MANy COMPLETE TIME
ASK EventLog TO WriteLnReal(SinTime(),8,2);

END IF;

WAIT FOR ManeuverComplete To Fire;
END WAIT;
END IF;

EnableRepair := FALSE;

CASE Process
WHEN pFFE:

IF LogEvents
ASK EventLog To WriteString(ID+" REPAIR CALLING AN FFE TIME
ASK EventLog To WriteLnReal(SimTirneo,8,2);

END IF;
Status :=Busy;
TELL SELF TO FFE;

WHEN pSpotFire:
IF LogEvents

ASK IventLog TO WriteString(ID+" REPAIR CALLING AN SpotFire TIME= ;
ASK EventLog To WriteLnReal(SimTimne0,8,2);

END IF;
Status := Busy;
TELL SELF TO Spot Fire;

OTHERWI SE
Status :=Idle;

Process :=pldle;

ASK Ship TO UpdateEngagementStatus (TRUE);
END CASE;
IF LogEvents

ASK EventLog TO WriteString(ID+" End Gun REPAIR FEE TIME=
ASK EventLog TO WriteLnReal(SimTimefl,8,2);

END IF;

END METHOD;

END OBJECT;

END MODULE.

95

9/11/91
DEFINITION MODULE TARGET;

{ --- -

MODULE NAME: TARGET
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/24/91
LAST MODIFIED: 7/29/91

DESCRIPTION:

This is a module of the NGFS simulation that defines the Target object.
Target is responsible for creating itself and impacting rounds fired at it.

----- --I
FROM MGrpMod IMPORT IDObj;
FROM GLOBALS IMPORT xyPoint, SpecifiedShellRecord;

TYPE

TargetStatusTYPE = (Operational,Damaged,Destroyed);
SpotKindTYPE = (Bracket, BracketLong, BracketShort, Direct);

DFRecordTYPE = RECORD;
DF :REAL;

ShellType STRING;
Next :DFRecordTYPE;

END RECORD;

Targetobj OBJECT(IDObj);

Type .STRING;

Status TargetStatusTYPE;
Priority INTEGER;
Assigned .BOOLEAN;

Location :xyPoint;

LifePoints :REAL;

DFList DFRecordTYPE;
HitThisFFE :BOOLEAN;

PreferredShell :STRING;

SpecifiedShells :SpecifiedShellRecord;

RndsPerFFE :INTEGER;

NormalSpotKind :SpotKindTYPE;

FOV INTEGER;
HQPtr ANYOBJ;
GunPtr .ANYOBj;

SpotGood :BOOLEAN;

Correction :xyPoint;

FEE BOOLEAN;
ECR REAL;
ECRLong :REAL;

BoxLong REAL;

96

BoxWide REAL;

CorrectionFactor REAL;

SpotKind SpotKindTYPE;

SpotTime REAL;

ASK METHOD CreateTarget(IN TargetType
STRING;

IN TargetID STRING;

IN Inbocatiof xypoint;

IN InPrioritY INTEGER;

IN IflFOV INTEGER;

IN InSpecifiedShells SpecifiedShellRecord;

IN InHQPtr ANYOBJ);

ASK METHOD InitializeTarget;

ASK METHOD UpdateAssigfled(IN AssignedStatus
BOOLEAN;

IN InGuflPtr ANYOBJ);

ASK METHOD StandbyForSpot(IN Spot~ype
:SpoLKifldTYPE);

ASK METHOD StandbyForFFE;

TELL METHOD ReportSPOtResult;

TELL METHOD ReportBDA;

TELL METHOD ImpactRoufld(IN Shell
:ANYCBJ);

PRIVATE
rLifePoiflts :REAL;

END OBJECT;

END MODULE.

97

9/11/91
IMPLEMENTATION MODULE TARGET;

MODULE NAME: TARGET
AUTHOR: LT. RICHARD L. DARDEN

DATE WRITTEN: 4/24/91
LAST MODIFIED: 9/1/91

DESCRIPTION:

This is a module of the NGFS simulation that implements the Target object.
Target is responsible for creating itself and impacting rounds fired at it.

-- }
FROM GLOBALS IMPORT xy-oint, Distance, origin, SpecifiedShellRecord, LOG,

EventLog, LogEvents;
FROM MIOMod IMPORT MStreamObj, InputLog;
FROM IOMod IMPORT FileUseType(Input);

FROM GUN IMPORT GunObj;
FROM SHELL IMPORT ShellObj;
FROM Debug IMPORT TraceStream;

FROM HQ IMPORT HQObj;
FROM SimMod IMPORT SimTime;

OBJECT TargetObj;

ASK METHOD CreateTarget(IN TargetType : STPING;
IN TargetID : STRING;
IN InLocation : xyPoint;
IN InPriority : INTEGER;

IN InFOV " INTEGER;

IN InSpecifiedShells : SpecifiedShellRecord;
IN InHQPtr : ANYOBJ);

VAR
TargetFile : MStreamObj;

SpotKindString : STRING;

I : INTEGER;
DFRecord : DFRecordTYPE;

NumDFs : INTEGER;
tempstr STRING;

BEGIN

HQPtr := 'nHQPtr;
',pe := TargetType;

ID := TargetID;

Location InLocation;
Priority InPricrity;
FOV : InF'V

98

SpecifiedShells :=InSpecifiedShells;
NEW (TargetFile);
ASK TargetFile TO Open(TargetType+*.TGT*, Input);
ASK TargetFile To SkipLines(9);
ASK TargetFile TO ReadLnRealLOG (LifePoints, "LifePoints");
ASK TargetFile TO ReadLnStrLOG(PreferredShell, "PreferredShell");
ASK TargetFile TO ReadLnIntLOG(RndsPerFFE, "RndsPerFFE");
ASK TargetFile TO ReadLnRea-LOG(ECR,"ECR");
ASK TargetFile TO ReadLnRealLOG (ECRLong, "EClkLong");
ASK TargetFile TO ReadLnRealLOG(BoxLong, "BoxLong");
ASK TargetFile To ReadLnRealLOG(BoxWide, "BoxWide");
ASK TargetFile TO ReadLnRealLOG (CorrectionFactor, "CorrectionFactor");
ASK TargetFile TO ReadLnStrLOG(SpotKindString, "SpotKind");
IF SUBSTR(1,1,SpotKindString) = '""

NormalSpotKind :=Direct;
ELSE

NorrnalSpotKind :=Bracket;

END IF;
ASK TargetFile TO ReadLnRealLOG(SpotTine, "SpotTime");
ASK TargetFile TO SkipLines~i);
ASK TargetFile To ReadLnIntLOG(NunDFs, "NurnDFs");
ASK InputLog TO WriteLn;
ASK TargetFile TO SkipLines(3);
NEW(DFList);
DFRecord :=DFList;
ASK InputLog TO WriteLnStr("DamageFactor Shell Type");
ASK InputLog TO WriteLn;
FOR I := 1 TO NumDFs

ASK TargetFile TO ReadReal(DFRecord.DF);
ASK InputLog TO WriteReal (DFRecord.DF,9,2);
ASK TargetFile TO ReadLnStr(DFRecord.ShellType);
tempstr :
REPLACE(tempstr,l5-STRLEN(DFRecord.ShellType) ,14,DFRecord.ShellType);
ASK InputLog TO WriteLnStr(tempstr);
NEW(DFRecord.Next);
DFRecord := DFRecord.Next;

END FOR;
ASK InputLog TO WriteLn;
DISPOSE(DFRecord.Next);
DFRecord.Next := NILREC;
ASK TargetFile TO Close;
DISPOSE (TargetFile);
rLifePoints := LifePoints;

END METHOD;

ASK METHOD InitializeTarget;

* BEGIN
Status operational;
Assigned FALSE;
GunPtr :=NILOBJ;

LifePoirts rLifePoints;
SpotGood FALSE;
FFE FALSE;

EN4D METHOD;

99

ASK METHOD UpdateAssigned(IN AssignedStatus BOOLEAN;
IN InGunPtr ANYOBJ);

BEGIN
Assigned AssignedStatus;
GunPtr InGunPtr;

END METHOD;

ASK METHOD StandbyForSpot(IN SpotCmd : SpotKindTYPE);

BEGIN
SpotGood FALSE;
SpotKind SpotCmd;
FFE FALSE;

END METHOD;

ASK METHOD StandbyForFFE;

BEGIN
FFE := TRUE;
HitThisFFE := FALSE;

END METHOD;

I ---- -

TELL METHOD ReportSpotResult;

VAR
Gun GunObj;

BEGIN

Gun GunPtr;
WAIT DURATION SpotTime
END WAIT;
AS, uun TO ReceiveSpotResult(SpotGood, Correction);

END METHOD;

TELL METHOD ReportBDA;

VAR

Gun GunObj;

BEGIN

Gun GunPtr;
WAIT DURATION SpotTime
END WAIT;

100

ASK Gun TO ReceiveBDA(HitThisFFE, Status);

END METHOD;

TELL METHOD ImpactRound(IN SheliPtr ANYOBJ);

VAR
Shell ShellObj;
Gun GunObj;
HQ HQObj;
MissDistance REAL;
DamageRadius REAL;
ImpactPoint xyPoint;
Damage REAL;
DFRecord DFRecordTYPE;
Found BOOLEAN;

BEGIN
Shell ShellPtr;
HQ HQPtr;
ImpactPoint :=ASK Shell ImnpactPoint;
Gun :=GunPtr;
MissDistance Distance(origin, ImpactPoint);
DamageRadius ECR + Shell.EDR;
IF MissDistance <= DamageRadius

IF LifePoints > 0.0
DFRecord :=DFList;
WHILE (DFRecord <> NILREC) AND NOT Found

IF DFRecord.ShellType =Sheil.Type
Found :=TRUE;

ELSE
DFRecord :=DFRecord.Next;

END IF;
END WHILE;
IF NOT Found

DFRecord :=DFList; (use default factor
END IF;

Damage :=Shell .Maxoamage*DpRecord.DF* C(DamageRadius-MissDistance)*
(DarageRadius-MissDistance))/I(DamageRadius*DamageRadius);

LifePoints :=LifePoints - Damage;
IF LifePoints <= 0.0

LifePoints :=0.0;
Status :=Destroyed;
IF LogEvents

ASK EventLog TO WriteString("!!! I I I I I I I III I "+ID+
DESTROYEDI!!!!!!!!!!!!! SimTime =");

ASK EventLog TO WriteLnReal(SimTimeo,8,2);
END IF;

ELSE
IF LogEvents

ASK EverntLog To WriteString(ID+* HIT!!! ECR =
ASK EventLog To WriteReal(ECR,8,2);
ASK EventLog TO WriteString(" MISS DISTANCE =
ASK EventLog TO Writepeal(MissDistance,8.2);
ASK Event Log TO WriteString(" LifePoints =)
ASK EventLog TO WriteLnReal(LifePoints,8,2);

101

END IF;
Status :=Damaged;

END IF;
ASK HQ TO UpdateTargetValue;

ELSE
IF LogEvents

ASK Event.Log TO WriteLnStr(ID+" ALREADY DESTROYED");
END IF;

END IF;
HitThisFFE := TRUE;

END IF;

IF NOT FFE
Correction.x := -IrpactPoint.x;:
IF LogEvents

ASK EventLog TO WriteString(*IMPACT POINT
ASK EventLog TO WriteReal(ASK Shell ImpactPoint.x,8,2);
ASK EventLog TO WriteLnReal (ASK Shell IrpactPoint.y,9,2);

END IF;
CASE Spot.Kind
WHEN Bracket. .BracketLong:

IF LogEvents
ASK EventLog TO WriteLnStr("BRACKET LONG");

END IF;
IF (ABS(InipactPoint.x) < ECR*Boxwide) AND

(ABS(ImpactPoint-y - ECR*ECRLong) < ECR*BoxLong)
SpotGood := TRUE;
correction := origin;

ELSE
Correction.y :=ECR*ECRLong - ImpactPoint.y;

END IF;
WHEN BracketShort:

IF LogEvents
ASK EventLog TO WriteLnStr("BRACKET SHORT*);

END IF;
IF (ABS(ImpactPoint~x) < ECR*BoxWide) AND

(ABS(ImpactPoint.y + ECR*ECRLong) < ECR*BoxLong)
SpotGood := TRUE;
Correction := origin;

ELSE
Correction.y := -ECR*ECRLong - InpactPoint.y;

END IF;
WHEN Direct:

IF LogEvents
ASK EventLog TO WriteLnStr("BRACKET DIRECT");

END IF;
IF MissDistance < ECR

SpotGood := TRUE;
Correction := origin;

ELSE
Correction.y := -ImpactPoint.y;

END IF;
END CASE;
Correction.x :=Correction.x*CorrectionFactor;

Correction.y :=Correction.y*CorrectionFactor;

IF LogEvents
IF SpotGood

ASK EventLog TO WriteString("SPOT RESULT, correction =TRUE")

102

ELSE
ASK EventLog TO WriteString("SPOT RESULT, correction =FALSE)

END IF;
ASK EventLog TO WriteReal (Correction.x,8,2);
ASK EventLog TO WriteLnReal(Correctiol.y,9,2);

END IF;
END IF;

DISPOSE (Shell);

END METHOD;

END OBJECT;

END MODULE.

103

9/11/91
DEFINITION MODULE SHELL;

{ --- -

MODULE NAME: SHELL
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/24/91
LAST MODIFIED: 8/2/91

DESCRIPTION:

This is a module of the NGFS simulation that defines the Shell object.
A Shell flies to a target and determines its impact point and whether or not
it successfully fires and fuses.

FROM MGrpMod IMPORT IDObj;
FROM GLOBALS IMPORT xyPoint;
FROM TARGET IMPORT TargetObj;
FROM MGrpMod IMPORT ComponentListObj;
FROM SEED IMPORT MRandomObj;
TYPE

ShellObj = OBJECT(IDObj);

Type : STRING;
Aimpoint : xyPoint;
ImpactPoint : xyPoint;
Target : TargetObj;
GunID : STRING;
Sigma xyPoint;
MaxDamage : REAL;
EDR : REAL;
RangeFactor : REAL;
Velocity : REAL;
NumberOfComponents : INTEGER;
ComponentList : ComponentListObj;
RandomGen : MRandomObj;

ASK METHOD CreateShell(IN ShellType : STRING);
TELL METHOD FlyToTarget(IN Target : TargetObj;

IN InAimpoint : xyPoint;
IN Range : REAL;
IN GunPtr : ANYOBJ);

END OBJECT;

PROCEDURE RangeFunction(IN Sigma : REAL;
IN RangeFactor : REAL;
IN Range : REAL) : REAL;

END MODULE.

104

9/11/91
IMPLEMENTATION MODULE SHELL;

MODULE NAME: SHELL
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/24/91
LAST MODIFIED: 9/1/91

DESCRIPTION:

This is a module of the NGFS simulation that implements the Shell object.
A Shell flies to a target and determines its impact point and whether or not
it successfully fires and fuses.

FROM MGrpMod IMPORT ComponentObj;
FROM GLOBALS IMPORT xyPoint, EventLog, LogEvents;
FROM MIOMod IMPORT MStreamObj, InputLog;
FROM IOMod IMPORT FileUseType(Input);
FROM TARGET IMPORT TargetObj;
FROM GUN IMPORT GunObj;

PROCEDURE RangeFunction(IN RSigma : REAL;
IN RangeFactor : REAL;
IN Range : REAL) : REAL;

BEGIN
IF RangeFactor < 0.0

RETURN RSigma;
ELSE

RETURN RSigma*RangeFactor*Range;
END IF;

END PROCEDURE;

OBJECT ShellObj;

ASK METHOD CreateShell(IN ShellKind : STRING);

VAR
I : INTEGER;
ShellFile : MStreamObj;
FailProb : REAL;
MTTRC : REAL;
MTTRH : REAL;
Description : STRING;
Component : ComponentObj;

BEGIN

ID := ShellKind;

NEW(ShellFile);
ASK InputLog TO WriteLnStr(

.**********************,*******.***************t.)*

ASK InputLog TO WriteLnStr(ShellKind);

ASK InputLog TO WriteLnStr(

105

ASK ShellFile TO Open(ShellKind+*.SHL*,Input);
ASK ShellFile TO SkipLines(9);
ASK ShellFile TO ReadLnStrLOG(Type, "TYPE");
ASK She].lFile To ReadLnRealLOG(Signa.x,"Sigma.x");
ASK ShellFile TO ReadLnRealLOG(Sigmna.y, "Sigmna.y");
ASK ShellFile To ReadLnRealLOG (MaxDamage, "MaxDamage");
ASK ShellFile TO ReadLnRealLOG(EDR,"EDR");
ASK ShellFile TO ReadLnReaILOG(Velocity, "VELOCITY");
ASK ShellFile TO ReadLnRealLOG (RangeFactor, "RangeFactor");
NEW(RandomGen);
ASK RandomGen TO GetSeed ("Shell*);
ASK InputLog TO Writelnt (Randomoen.originalSeed,lO);
ASK InputLog TO WriteLnStr(* Shell error random number seed");
ASK ShellFile TO SkipLines(l);
ASK ShellFile To ReadLnIntLOG(NunberOfComponents,"Nunber Of Shell "+

"Components");
ASK ShellFile TO SkipLines(3);
NEW(ComponentList);
ASK InputLog TO WriteLnStr(

"FailProb MTTRC MTTRH Seed Description*);
FOR I :=1 TO NuniberOfComponents

ASK ShellFile TO ReadReal(FailProb);
ASK InputLog TO WriteReal(FailProb,lO,4);
ASK ShellFile TO ReadReal(MTTRC);
ASK InputLog TO WriteReal (MTTRC, 10,2);
ASK ShellFile To ReadReal(MTTRH);
ASK InputLog TO WriteReal(MTTRH,lO,2);
ASK ShellFile To ReadLine(Description);
NEW(Component);
ASK Component TO CreateComponentiDescription, FailProb,

MTTRC, MTTRH);
ASK (ASK Component RandomGen) TO GetSeed("Shell");
ASK InputLog TO Writelnt(ASK Component RandomGen.originalSeed,12);
ASK InputLog TO WriteLnStr(Description);
ASK ComponentList TO Add(Component);

END FOR;
ASK InputLog TO WriteLnStr(

ASK ShellFile To Close;
DISPOSE (ShellFile);

END METHOD;

TELL METHOD FlyToTarget(IN Target Targetobj;
IN InAimpoint xyPoint;
IN Range REAL;
IN GunPtr ANYOBJ);

VAR
Gun :Gun~bj;

106

BEGIN

Aimpoint :=IfAirpoint;
WAIT DURATION Range/Velocity;
END WAIT;

ImpactPoint.x ASK Randorn~en Norrnal(Airnpoint.x,
RangeFunction (Sigma .x, RangeFactor, Range))

ImpactPoint.y ASK RandornGen Norinal(Aimpoint.y,
RangeFunction(Sigina.y,RangeFactor,Range));

IF Target = NILOBJ (This is a Registration Round)
Gun := GunPtr;
ASK Gun TO TrackRound(IinpactPoint);
DISPOSE (SELF);

ELSE
TELL Target TO ImpactRound(SELF);

END IF;

END METHOD;

END OBJECT;

END MODULE.

107

9/11/91
DEFINITION MODULE SEED;

(--- -

MODULE NAME: SEED
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 7/31/91
LAST MODIFIED: 8/19/91

DESCRIPTION:

This is a module that defines a SeederObj object and a MRandomObj as well as
the variable seeder.

The SeederObj is a random number generator seed manager that has two methods

ASK METHOD ReadSeeds(<seedfilename>)

This method reads a seed file of the following format into memory

<name> #1
##

##

<name2> #2

ENDFILE.

Where <namel> is the name of the first string of seeds and #1 is the number
of seeds in the first string of seeds and ## are the seeds
ENDFILE. designates the end of the file.

ASK METHOD GetNextSeed(<seedlistname>,seed);

This method gets the next seed in the string of seedlistname seeds.

MRandomObj is a RandomObj that adds one method, GetSeed(<name>)

This method queries the SeederObj for the next seed from the <name> seed list

FROM RandMod IMPORT RandomObj;

TYPE
SeedListTYPE = RECORD

Name : STRING;
Seeds : ARRAY INTEGER OF INTEGER;
NumberOfSeeds : INTEGER;
NextSeed : INTEGER;
NextSeedList : SeedListTYPE;

END RECORD;

108

SeederObj = OBJECT

SeedList: SeedListTYPE;
ASK METHOD ReadSeeds(IN SeedFileName :STRING);
ASK METHOD GetNextSeed(IN SeedListNaire STRING;

OUT Seed INTEGER);

ASK METHOD ObjTerminate;

END OBJECT;

MRandomObj = OBJECT (RandornObj);

ASK METHOD GetSeedfIN SeedListName :STRING);

END OBJECT;

VAR

seeder :SeederObj;

END MODULE.

109

9/11/91
IMPLEMENTATION MODULE SEED;

MODULE NAME: SEED
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 7/31/91
LAST MODIFIED: 8/19/91

DESCRIPTION:

This is a module that implements a SeederObj object and a MRandomObj as well as
the variable seeder.

The SeederObj is a random number generator seed manager that has two methods

ASK METHOD ReadSeeds(<seedfilename>)

This method reads a seed file of the following format into memory

<name> #1
##
##
##

<name2> #2
##

ENDFILE.

Where <namel> is the name of the first strirg of seeds and #1 is the number
of seeds in the first string of seeds and ## are the seeds
ENDFILE. designates the end of the file.

ASK METHOD GetNextSeed(<seealistname>,seed);

This method gets the next seed in the string of seedlistname seeds.

MRandomObj is a RandomObj that adds one method, GetSeed(<name>)

This method queries the SeederObj for the next seed from the <name> seed list

..

FROM RandMod IMPORT RandomObj;
FROM MIOMod IMPORT MStreamObj, InputLog;
FROM IOMod IMPORT FileUseType(Input);
FROM UtilMod IMPORT RuntimeError;

OBJECT SeederObj;

ASK METHOD ReadSeeds(IN SeedFileName : STRING);

VAR
SeedFile : MStreamObj;
Done : BOOLEAN;
SeedListName : STRING;

110

I : INTEGER;
TempSeedList :SeedListTYPE;

BEGIN
NEW(SeedFile);
ASK SeedFile TO Open(SeedFiieNarne,Input);
WHILE (NOT Done) AND (NOT SeedFile.eof)

ASK SeedFile To ReadString(SeedListName);
IF SeedListName = "ENDFILE."

Done := TRUE;
ELSE

NEW (SeedList);
SeedList.Name := SeedListName;
ASK SeedFile TO ReadLnlnt (SeedList.NurnberOfSeeds);
NEW(SeedList.Seeds, 1. .SeedList.NumberOfseeds);
SeedList.NextSeed :=1;
FOR I :=1 TO SeedList.NurnberOf Seeds

ASK SeedFile To ReadLnlnt (SeedList.Seeds[I]);
END FOR;
SeedList.NextSeedList :=TempSeedList;
TempSeedlist := SeedList;

END IF;
END WHILE;
ASK SeedFile To Close;
DISPOSE (SeedFile);

TenipSeedList := SeedList;
WHILE TenipSeedList <> NILREC

OUTPUT(' SEED LIST DUMP FOR > ",TernpSeedList.Nane);
OUTPUT(" NUMBER OF SEEDS = ,TempSeedList.NumberotSeeds);
FOR I := 1 TO TerpSeedList.NumberOfSeeds

OUTPUT(TempSeedList.Seeds[II);
END FOR;
TernpSeedList := empSeedList.NextSeedList;

END WHILE;

END METHOD;

ASK METHOD GetNextSeed(IN SeedListName STRING;
OUT Seed :INTEGER);

VAR
CurrentSeedList :Seed~istTYPE;

BEGIN
CurrentSeedL'st SeedList;
WHILE (CurrentSeedList <> NILREC) AND (CurrentSeedList.Nane <> SeedListNane)

CurrentSeedList :=CurrentSeedList .NextSeedList;
END WHILE;
IF CurrentSeedList NILPEC

RuntimeError)"NGFS ERROR: Seed-ristName >*+SeedListName+
.< not found in seeders ;

ELSE
IF Current~eedList.NextSeed > CurrentSeedList.NurnberOfSeeds

RuntireError("NGFS ERROR: Ran out of seeds in seed list >"+

SeedListNarne*< Number in list ="
INTTOSTR(CurrentSeedList .NurnberOfSeeds));

ELSE

Seed :=CurreritSeedi Lst.Seeds[CurrentSeedList.NextSeed];
CurrentSeedList .NextSeed z=Cu-rrentSeedList.NextSeed + 1;

END IF;
END IF;

END METHOD;

ASK METHOD ObjTerm~inate;

VAR
TempSeedList :SeedListTYPE;

BEGIN
WHILE SeedList <> NILREC

DISPOSE(SeedList .Seeds);
TernpSeedList :=SeedList.Next.SeedList;
DISPOSE(SeedList);
SeedList :=TempSeedList;

END WH{ILE;
END METHOD;

END OBJECT;

OBJECT MRandomObj;

ASK METHOD GetSeed(IN SeedListName :STRING);

VAR
seed :INTEGER;

BEGIN

ASK seeder TO GetNextSeed(SeedListName, seed);
ASK SELF TO SetSeed(seed);

END METHOD;

END DEJECT;

END MODULE.

112

9/11/91
DEFINITION MODULE GLOBALS;

{ ------ ---

MODULE NAMdE: GLOBALS
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/29/91
LAST MODIFIED: 9/1/91

DESCRIPTION:

This is a module of the NGFS simulation that defines the GLOBAL data

structures used in the program with the exception of ShellList which
is defined in MGrpMod;

------- ---I

FROM RandMod IMPORT RandomObj;
FROM MGrpMod IMPORT ListObj;
FROM MIOMod IMPORT MStreamObi;

TYPE

xyPoint = FIXED RECORD

x REAL;
y :REAL;

END RECORD;

SpecifiedShellRecord = RECORD
ShellKind :STRING;
NextShell :SpecifiedShellRecord;

END RECORD;

VAR
ShellList :ListObj;

origin :XYPoint;

TooLong :REAL;

SpotDeltaT :REAL;
LOG :MStreamObj;
LogEvents :BOOLEAN;

EventLog :MStreamObj;

PROCEDURE Distance(IN locationl :XyPoint;

IN 1occ.tcr.2 xyPointj : REAL;

END MODULE.

113

9/11/91
IMPLEMENTATION7 MODULE GLOBALS;

MODULE NAME: GLOBALS
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/29/91
LAST MODIFIED: 512/91

DESCRIPTION:

This is a module of the NGFS simulation that implements the GLOBAL data
structures and procedures used in the program.

FROM RandMod IMPORT RandomObj;
FROM MathMod IMPORT SQRT;

PROCEDURE Distance(IN locationi :xyPoint;

IN iocation2 :XyPoint) : REAL;

BEGIN

RETURN SQRT((location.x-location2.x)*(location.x-location2.x)
+ (locationl.y-location2.y)*(locationl.y-location2.y));

END PROCEDURE;

END MODULE.-

114

9/11/91
DEFINITION MODULE MIOMod;

MODULE NAME: MIOMod
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/16/91
LAST MODIFIED: 7/30/91

DESCRIPTION:

This is a module of the NGFS simulation that modifies the standard Stream.OBJ
of IOMod to shorten input and output. It also defines a new type of file
allows indexing on input by adding a PositionOn method that positions the
file to the begining of a record based on the following file format:

BOF
11 lines of comments
INTEGER (OFFSET) offset to 1st line of 1st record skips over index
INTEGER (RECORD LENGTH) length of each record
2 lines of comments
STRING (TYPE) index on these strings
STRING

I lines in index

2 lines of comments
first data line of record

record length of lines in each record

first data line of next record etc

FROM IOMod IMPORT StreamObj;
FROM UtilMod IMPORT RuntimeError;

TYPE

MStreamObj = OBJECT(StreamObj);

ASK METHOD ReadLnInt(OUT n : INTEGER);
ASK METHOD ReadLnReal(OUT x : REAL);
ASK METHOD ReadLnStr(OUT str: STRING);
ASK METHOD SkipLines(IN n : INTEGER);

ASK METHOD WriteLnInt(IN num : INTEGER;
IN fieldwidth : INTEGER);

ASK METHOD WriteLnReal(IN num : REAL;
IN fieldwidth : INTEGER;
IN precision : INTEGER);

ASK METHOD WriteLnStr(IN str : STRING);
ASK METHOD WriteLines(IN n : INTEGER);

115

ASK METHOD ReadLnIntLOG (OUT n :INTEGER;
IN str :STRING);

ASK METHOD ReadLnRealLOG(OUT x :REAL;
IN str STRING);

ASK METHOD ReadLnStrLOG (OUT str STRING;
IN instr :STRING);

END OBJECT;

IndexStreamObj = OBJECT(MStreamObj);

ASK METHOD Position~n(IN Type STRING);

END OBJECT;

VAR
InputLog MStreamObj;

END MODULE.

116

9/11/91
IMPLEMENTATION MODULE MIOMod;

MODULE NAME: MIOMod
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/16/91
LAST MODIFIED: 8/1/91

DESCRIPTION:

This is a module of the NGFS simulation that modifies the standard Stream.OBJ
of IOMod to shorten input and output.

------ --I
FROM IOMod IMPORT StreamObj;
FROM UtilMod IMPORT RuntimeError;

OBJECT MStreamObj;

ASK METHOD ReadLnlnt(OUT n : INTEGER);

VAR

str : STRING;

BEGIN

ASK SELF TO Readlnt(n);
ASK SELF TO ReadLine(str);

END METHOD;

ASK METHOD ReadLriReal(OUT x : REAL);

VAR
str : STRING;

BEGIN

ASK SELF To ReadReal(x);
ASK SELF TO ReadLine~str);

END METHOD;

ASK METHOD ReadLnStr(OUT str :STRING);

VAR
strx : STRING;

BEGIN

ASK SELF TO ReadString(str);
ASK SELF To ReadLine(strx);

END METHOD;

117

ASK METHOD SkipLines(IN n : INTEGER);

VAR
str STRING;
I INTEGER;

BEGIN

FOR I := 1 TO n;

ASK SELF TO ReadLine(str);

END FOR;

END METHOD;

ASK METHOD WriteLnInt(IN num, fieldwidth INTEGER);

BEGIN

ASK SELF TO WriteInt(num, fieldwidth);
ASK SELF TO WriteLn;

END METHOD;

ASK METHOD WriteLnReal(IN num REAL;
IN fieldwidth INTEGER;
IN precision INTEGER);

BEGIN

ASK SELF TO WriteReal(num, fieldwidth,precision);
ASK SELF TO WriteLn;

END METHOD;

ASK METHOD WriteLnStr(IN str: STRING);

BEGIN

ASK SELF TO WriteString(str);
ASK SELF TO WriteLn;

END METHOD;

ASK METHOD WriteLines(IN n INTEGER);

VAR
I : INTEGER;

BEGIN

FOR I := 1 TO n
ASK SELF TO WriteLn;

END FOR;

END METHOD;

118

ASK METHOD ReadLnIntLOG(OUT n : INTEGER;

IN str : STRING);

BEGIN
ASK SELF TO ReadLnInt(n);
ASK InputLog TO WriteInt(n,10);
ASK InputLog TO WriteLnStr(" " + str);

END METHOD;

ASK METHOD ReadLnRealLOG(OUT x : REAL;
IN str: STRING);

BEGIN
ASK SELF TO ReadLnReal(x);
ASK InputLog TO WriteReal(x,10,2);
ASK InputLog TO WriteLnStr(" + str);

END METHOD;

ASK METHOD ReadLnStrLOG(OUT str STRING;
IN instr STRING);

VAR
tempstr : STRING;

BEGIN
ASK SELF TO ReadLnStr(str);
tempstr := *
IF STRLEN(str) > 10

ternpstr := str +
ELSE

REPLACE(tempstr,ll - STRLEN(str),10,str);
END IF;
ASK InputLog TO WriteLnStr(tempstr + instr);

END METHOD;

END OBJECT;

OBJECT IndexStreamObj;

ASK METHOD Positionon(IN Type STRING);

VAR
Offset : INTEGER;
RecordLength INTEGER;
Index INTEGER;
Found BOOLEAN;
MatzhType STRING;

ErrMsg STRING;

BEGIN
ASK SELF TO SkipLines(ll);
ASK SELF TO ReadLnInt(Offset);
ASK SELF TO ReadLnInt(RecordLength);
ASK SELF TO SkipLines(4);

REPEAT
ReadLnStr(MatchType);
Index := Index+l;

UNTIL (MatchType = Type) OR (Index = Offset);

IF (Index = Offset) AND (MatchType <> Type)

119

ErrMsg "INTERNAL NGFS ERROR -- following type not in file>*;
INSERT (ErrMsg, 52 ,Type);
Runt imeError (ErrMsg);

ELSE
ASK SELF TO SkipLines((Index-i) *RecordLength+OffsetlIndex);

END IF;

END METHOD;

END OBJECT;
END MODULE.

120

9/11/91
DEFINITION MODULE MGrpMod;

MODULE NAME: MGrpMod
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/16/91
LAST MODIFIED: 5/l/91

DESCRIPTION:

This is a module of the NGFS simulation that defines the following objects
based on the QueueObj of GrpMod:

ComponentListObj : Maintains a list of components that can fail of an
object and allows a querry of which ones fail

ListObj Maintains a list of objects and allows a querry of
a pointer to an object based on a string field ID

FROM SEED IMPORT MRandomObj;
FROM GrpMod IMPORT QueueObj;

TYPE

IDObj = OBJECT

ID : STRING;

END OBJECT;

ComponentObj = OBJECT(IDObj)

FailProb : REAL;
MTTRC : REAL;
MTTRH : REAL;
RandomGen : MRandomObj;

ASK METHOD CreateComponent(IN ID : STRING;
IN FailProb : REAL;
IN MTTRC : REAL;
IN MTTRH REAL);

END OBJECT;

ComponentListObj = OBJECT(QueueObj)

ASK METHOD SampleForFailure(IN Hot BOOLEAN;
OUT Failure : BOOLEAN;
OUT MTTR : REAL;
OUT DESCRIPTION : STRING);

121

END OBJECT;

Listobj = OBJECT(Queueobj)

ASK METHOD PtrTo(IN ID STRING;
IN HaltlfNotOnList BOOLEAN) ANYOBJ;

END OBJECT;

END MODULE.

122

9/11/91
IMPLEMENTATION MODULE MGrpMod;

MODULE NAME: MGrpMod
AUTHOR: LT. RICHARD L. DARDEN
DATE WRITTEN: 4/16/91
LAST MODIFIED: 5/1/91

DESCRIPTION:

This is a module of the NGFS simulation that defines the following objects
based on the QueueObj of GrpMod:

ComponentListObj : Maintains a list of components that can fail of an
object and allows a querry of which ones fail

ListObj Maintains a list of objects and allows a querry of
a pointer to an object based on a string field ID

..

FROM UtilMod IMPORT RuntimeError;

OBJECT ComponentObj;

ASK METHOD CreateComponent(IN InID STRING;
IN InFailProb : REAL;
IN InMTTRC : REAL;
IN InMTTRH : REAL);

BEGIN

ID := InID;
FailProb := InFailProb;
MTTRC := InMTTRC;
MTTRH := InMTTRH;

NEW(RandomGen);

END METHOD;

END OBJECT;

OBJECT ComponentListObj;

ASK METHOD SampleForFailure(IN Hot : BOOLEAN;
OUT Failure : BOOLEAN;
OUT MTTR : REAL;
OUT Description : STRING);

123

VAR
Component ComponentObj;
Sample REAL;

BEGIN

Component ASK SELF First(;
WHILE (Component <> NILOBJ) AND (NOT Failure);

Sample := ASK Component.RandomGen UniformReal(0.0, 1.0);
IF Sample <= Component.FailProb

IF Hot
MTTR ComponentMTTRH;

ELSE
MTTR Component.MTTRC;

END IF;
Failure TRUE;
Description := Component.ID;

ELSE
Component := ASK SELF Next(Component);

END IF;
END WHILE;

END METHOD;

END OBJECT;

OBJECT ListObj;

ASK METHOD PtrTo(IN ID STRING;
IN HaltIfNotOnList BOOLEAN) ANYOBJ;

VAR

Ptr IDObj;
ErrMsg STRING;

BEGIN

Ptr := ASK SELF First();
WHILE (Ptr <> NILOBJ) AND (ASK Ptr ID <> ID);

Ptr := ASK SELF Next(Ptr);
END WHILE;
IF (Ptr = NILOBJ) AND HaltIfNotOnList

ErrMsg := "Internal NGFS error. This was not on the list=>*;
INSERT(ErrMsg,49,ID);
RuntimeError(ErrMsg);

ELSE
RETURN Ptr;

END IF;

END METHOD;

END OBJECT;
END MODULE.

124

APPENDIX B SAMPLE NGFS INPUT FILES

9/11/91

NGFS Simulation Parameters DATA FILE
(SIMPARM.DAT)

DATA FILE NAME SIMPARM.DAT
DESCRIPTION This file sets up the simulation parameters for the NGFS

Simulation

*********************** ***

Calculate StopMode How the simulation stops (Calculate or NumReps)
1000 MaxRep Stop the simulation after this number of runs
0.20 StoppingPercentage When StopMode equal Calculated run until the

convidence interval is this percentage of the value
1.96 InvNormalCl Inverse Normal Function for 5% CI
NGFSSEED.DAT SeedFile name of the random number generator seed file
FALSE LogEvents if TRUE logs simulation events to INPUT.LOG file

125

9/11/91

NGFS SCENARIO DATA FILE

BASE LINE TEST SCENARIO

ACTUAL DataFileName
Tue Aug 20 01:38:29 1991
Richard_Darden UpdatedBy

General DATA

10.0 TooLong If a gun is down for greater than this reassign tgt

TARGET DATA

12 NumTargets Number of Targets in Scenario

TargetType TargetID Xpos Ypos Priority FOV Specified
Shells

T-72TANK TANK_-01 8250.0 -2250.0 3 1 SSinHEl x
T-72TANK TANK -02 8250.0 -4250.0 3 3 S5inHEl x
T-72TANK TANK_-03 7750.0 -6250.0 3 5 S5inHEI x
T-72TANK TANK_-04 7250.0 -8250.0 3 7 S5inHE1 x
BASICHQ HQ -01 11000.0 -6250.0 1 5 S5inHE x
AABAT AABAT_-01 9500.0 -5250.0 2 4 none
AABAT AABAT_-02 95G0.0 -7250.0 2 6 none
ARTY ARTY_-01 10000.0 -4250.0 4 3 none
ARTY ARTY_-02 9000.0 -6250.0 4 6 none
INFANTRY INF -01 8250.0 -3250.0 5 2 none
INFANTRY INF -02 8000.0 -5250.0 5 4 none
INFANTRY INF -03 7500.0 -7250.0 5 6 none

SHIP DATA

4 NumShips Number of Ships in Scenario

ShipType ShipID Xpos Ypos Course Speed ManFileName

SPRUANCE DD -01 2000.0 -6000.0 000.0 5.0 Manvl.MAN
SPRUANCE DD_-02 2000.0 -9000.0 000.0 5.0 Manvl.MAN
PERRY FF -01 2000.0 -7000.0 000.0 5.0 Manvl.MAN
PERRY FF -02 2000.0 -8000.0 000.0 5.0 Manvl.MAN

126

9/11/91

NGFS SHIP DATA FILE

Spruance. SHP

SPRUANCE ShipName
Mon Aug 19 23:44:44 1991
Richard_Darden UpdatedBy

100.0 NavSigma.x Navigation System Variance

100.0 NavSigma.y
2 NumGuns Number of guns on board

GunType GunNumber

5in54cal 1
5in54cal 2

127

9/11/91

NGFS GUN DATA FILE

5in54Cal

5in54cal DataFileName
Mon Aug 19 23:44:44 1991
RichardDarden UpdatedBy

2.0 Sigma.x Gun Accuracy Variance
2.0 Sigma.y
0.05 CycleTime Time required for gun to cycle
0.49 MaxFlightTime Flight time for max range
4 NumRegRounds Number of rounds in a registration fire
17000.0 RegRange Registration range YDS
50 ShotsBeforeHot Number of Rounds before Gun is Hot
-1.0 RangeFactor -1 to disable

5 Number of Shell types in Magazine

ShellKind Type Description

5inHE HE High explosive 5 in round
5inFRAG FRAG Fragmenting 5 in round
5inAP AP Armor Piercing 5 in round
5inHE SUB use HE round
5inHE SPC use HE round

49 Number of Gun Components

FailProb MTTRC MTTRH DESCRIPTION

0.0004762 0.0 0.0

0.0010000 2.7 2.7
0.0010000 15.0 15.0
0.0004762 0.0 0.0
0.00OS556 0.8 0.8
0.0012346 9.3 9.3
0.0031250 6.0 6.0
0.0012346 1.8 1.8
0.0066667 41.0 41.0
0.0025000 5.3 5.3
0.0006250 0.0 0.0
0.0006250 4.2 4.2
0.0000256 0.0 0.0
0.0000526 6.5 6.5
0.0008333 0.0 0.0
0.0008333 0.0 0.0
0.0008333 0.0 0.0
0.0008333 5.0 5.0
0.0008333 0.0 0.0
0.0000256 0.0 0.0
0.0000256 23.0 23.0
0.0000256 9.3 9.3
0.0000256 0.0 0.0
0.0000526 0.5 0.5
0.0000256 0.0 0.0

128

0.0000256 0.0 0.0
0.0000256 0.0 0.0
0.0000256 0.0 0.0
0.0000256 0.0 0.0
0.0000256 6.6 6.6
0.0003846 2.3 2.3
0.0001299 1.1 1.1
0.0000256 0.0 0.0
0.0000769 3.0 3.0
0.0000256 0.0 0.0
0.0000256 2.4 2.4
0.0006250 0.0 0.0
0.0000256 3.9 3.9
0.0001282 0.0 0.0
0.0000256 0.0 0.0
0.0000256 4.0 4.0
0.0000256 0.0 0.0
0.0000256 11.0 11.0
0.0000256 0.0 0.0
0.0000256 0.0 0.0
0.0000256 0.0 0.0
0.00002S6 0.0 0.0
0.0000256 0.0 0.0
0.0000256 0.0 0.0

129

9/11/91

SHELL DATA FILE 5inHE

5inHE Data for a Sin High Explosive Shel

5inHE DataFileName
Mon Aug 19 23:44:44 1991
RichardDarden UpdatedBy

HE ShellType This is a High Explosive Shell
1.0 Sigma.x Shell Accuracy Variance
1.0 Sigma.y
20.0 MaxDamage Maximum damage this shell can cause
5.0 EDR Effective Damage Radius
53149.6 Velocity Shell velocity yds/MIN
-1.0 RangeFactor coeficient of range accuracy -1 disabled

5 NumberOfComponents number of components in shell that can
fail

FailProb MTTRC MTTRH DESCRIPTION

0.003 25.0 55.0 PRIMER
0.00139 31.0 61.0 PROPELLENT CHARGE
0.003 10.0 10.0 FIRING PIN
0.005 0.0 0.0 EXPLOSIVE
0.000083 0.0 0.0 DETONATOR

130

9/11/91

NGFS TARGET DATA FILE

BASICHQ Contains data that simulates a BASIC HQ TARGET

BASICHQ DataFileName
Mon Aug 19 23:44:44 1991
RichardDarden UpdatedBy

35.0 LifePoints This life points of this target
HE PreferredShell Shell type to use against this target

* 12 RndsPerFFE Number of rounds per FFE for this target
10.0 ECR Effective circular radius yards
2.0 ECRLong Offset to bracket boxes in *ECR units
1.0 BoxLong Length of bracket box in *ECR units
1.0 BoxWide Width of bracket box in *ECR units
0.9 CorrectionFactor Only correct this much of miss distance
Bracket SpotKind Do bracket spotting on this target
0.50 SpotTime time in seconds to spot

3 Number of Damage Factors listed

DamageFactor Shell Type Damage Factor of target to various shell types

0.8 HE <= (Default damage factor)
0.8 FRAG
0.4 AP

131

9/11/91

NGFS MANUEVER DATA FILE #1
(MANVi.DAT)

DATA FILE NAME : MANVI.DAT
DESCRIPTION : 5000 YARD BATTLE LINE AT 5KTS INITIAL SPEED
LAST MODIFIED : 8/2/91

MANEUVER DATA

DeltaTime DeltaCourse DeltaSpeed Advance Transfer Duration

0030.0v 180.00 0.0 000.0 -1000.0 05.00
-1.0

132

9/11/91
Ship 50 > # SHIPS
2017146438
1413213671
392053470
684529876

1007116790
740250286
1201661671
370844991

1969699122
1708460431
618976317

1168596879
1886201888
392989881
799298326
246209260
538370580

2093539433
320699838

1372346883
825278867

1773135851
839212284
167499556

1339809316
1423630665
2097690772
1153906231
488155557

1929962608
669496870

1234903993
1942562258
689051767

2000310426
1134221203
772777814
871931336

2127914512
1136500243
1252287221
184365652
73463703
84061736

471441434
1506432110
227315464
1942719004
1508165913
1342117964

Gun 450 > # GUNS * (1 * NUMBER FAILURES PER GUN
1134221203
772777814
871931336

2127914512
1136500243

133

1252287221
184365652
73463703
84061736

471441434
1506432110
227315464

1942719004
1508165913
1342117964
2055753977

39581853
1453533614
483129542
467476811
516068878
965878699
128299071
985145439
619592575

1645390429
547070247
956650449

1823265775
1804951546
2147118575

32 5352 551
1504174718

73055694
636998749

1462839730
28112438

951863662
404170188

1307113196
192162417

1013137689
871880609
591373335
777057464
273610459

1949859982
741836289
968440228
197592295

1813627466
1273220553
1157745798

26220005
619558279
536126172

1440331842
121184505
396451164
797548811
931571114

1471192250
362690338

134

1706360386
1564802464
1790797553
898350637
1279110304
443053755
1139079825
424828146
875272429
1362312062
947168028
2121235004
1506369355
1312461178
404767434
1639284818
614775439
890426103

1546747636
1231485493
1884505518
1285050892
1057831785
285229091
1532722664

75342124
507755637

1166570195
908409930

1404052414
2060078470
260299136
1975677990
1119262381
1185081855
1108652391
581362415

1214005104
1690068976
1575719926
1761483833
144642838

1345634196
241654488

1413242377
2112751716
1814690540
1457418367
1201189105
412509432
118831179
997138152

1972103304
753451007
813413829
387734608

1486611293
809921819

135

2146007969
402929923
1559707544
1040012126
831312807

1348540613
903104502
745518912
1269904814
241508321

1709501965
1504351011
1357221586
826302239
521235650
87021785
904974031
697964027
21976770
556862300

1598162604
1091760299
903105303
434022324

1885535037
622438816
422844916
870218640

1359038352
1059483416
926128229
829979802

1166525451
448874700

1280689831
1255985194
1911216000

76271663
1046574445
2132545692
922510944

1901633463
1663153658
1116780070
2017146438
1413213671
392053470
684529876

1007116790
740250286

1201661671
370844991

1969699122
1708460431

618976317
1168596879
1886201888
392989881

136

799298326
246209260
538370580
2093539433
320699838
1372346883
825278867

1773135851
839212284
167499556

1339809316
1423630665
2097690772
1153906231
488155557

1929962608
669496870

1234903993
1942562258
689051767

2000310426
2007288405

238816165
1266870678
1235626112
1091961447
717544387
890603925
1302083772
1124190290
938163111
1026962274
1949197326
2037584015
1779810405
1253972948
1810631854
2145226806
1570178581
754011695
1048507996
483116016
1095943763
810864707

2142874801
387941933
960279820

1442561861
447999152

2060725609
1408961130
1242956972
1405846315
1858555148
1404582979
2090418009
2052451294
740452247

137

1165117153
2087000425
18029 9984 0
1322497268
1462127324
1039959873
1580771462
541636181

1149282773
1532201206
1252835522
360144085
969638136
261679677
336611124
381259014
73995607

332416151
1453298236
1986152881

388343933
807477169
861242803

1934274498
345767925
476279423

1924935738
1325558602

825334243
1317635274
134905925

1618044239
631506869
675019952

2001422005
26308574

1995634011
1775484973
1562297091
1964678251
314740901

1268570162
710221486

1939894042
1514049229
1792643676
915828956

1724390712
1477157980

6563532
1647112540
1275212393
394508488

1518927456
556955271
79110810S

1844261189
1529208344

138

1427566642
1226045295
116806900
440123166

1919013627
427144072

1688325155
213976647

1636237860
1923410657
1549618281
182702660

2017694006
1057904683
1136744383

91411172
6303267

1194506154
1706542272
2094014020
1092982467

541312145
227619909

20942426F
141605662
549142496

1693037207
2111632818
681013520
582992972
333507937
1414049255
733240153
1130230427
190493738
1768786018
1560397019
533141365
567616578
432304107

1215539156
180215082

1829270049
135287185
733685470
153044115
863006962

2024124455
338674142
247716735
1333626207
181198026
455368390
846495522
1988544667

79320989
260204515
746973287

139

1850603010
1015015810
1709502012
1275736390
1366305583
515236201
866859548

1813703217
1553004127
1589788265
667786859

1098071357
991502177
617098489

1565413112
916977454
404454593
280956916
306316401

1017171544
397679580

1813801718
2089470288
437786143

1202278604
706557017
931141112

1233047398
2071280957
1455040260
225641182
29222533
234945010

2142073064
1458617547
761078953
978251899

1607718701
1281907088
2083001175
1099532014
1371045894
1737857337
1172220670
1723292381
1655195863
341409463

2055753977
39581853

1453533614
483129542
467476811
516068878
965878699
128299071
985145439
619592575

1813627466

140

1273220553
1157745798

26220005
619558279
536126172

1440331842
121184505
396451164
797548811
931571114
1471192250
362690338
1706360386
1564802464
1790797553
898350637
1279110304
443053755
1139079825
424828146
875272429
1362312062
947168028
2121235004
1506369355
1312461178
404767434

1639284818
614775439
890426103
1546747636
1231485493
1884505518
1285050892
1057831785
285229091
1532722664

75342124
507755637

Shell 290 > # SHELL TYPES * (1 + NUM FAILURES PER SHELL
1254318178
2098139799
1666387071
911875952
351174903
464973991

1770094307
1863956514
1102021507
781766289

1124152402
1882617099

812288517
106729244
245574656
261665646

2033624739
1969836395

141

157793896
271130524
1546849755
651838142
1701564872

82724243
12483111

244906808
350621083
91152652
100794820
56264518

1917274567
1760483675
687736478

1920103439
255164492
1829412931

65802986
1189391847
136131375
986128304
94592367

501389520
1757408342
277662939
94653517

1324734924
1519183595
150068586

2142427089
339637926

2095730046
1299278160
1593726487
139772732
753384216

1368116222
702934821
315897538
1665507074
396096350

1307195449
1210629562
1990786372
324917526
246662309
527168661
1466374090
1612447373
390419262

738981513
1415473401
852828828

1594217849
1811552072
555113698
191420131

142

296809705
1343447161
1429251956
1795372280
249951116
126991137

2053654587
1671659035
1081266376
1467384 04
1068948983

I769812819
673887940
506079764
1166570195
908409930
1404052414
2060078470
260299136

1975677990
1119262381
1185081855
1108652391
581362415

1254318178
2098139799
1666387071
911875952
351174903
464973991

1770094307
1863956514
1102021507
781766289
1124152402
1882617099
812288517
106729244
245574656
261665646
2033624739
1969836395
157793896
271130524
1546849755
651838142

s 1701564872
82724243
12483111

244906808
350621083
91152652
100794820
56264518

1917274567
1760483675
687736478

1920103439

143

255164492
1829412931

65802986
1189391847
136131375
986128304
94592367

501389520
1757408342
277662939
94653517

1324734924
1519183595
150068586

2142427089
339637926
2095730046
1299278160
1593726487
139772732
753384216
1368116222
702934821
315897538
1665507074
396096350

1307195449
1210629562
1990786372
324917526
246662309
527168661

1466374090
1612447373
390419262
738981513
1415473401
852828828

1594217849
1811552072
555113698
191420131
296809705
1343447161
1429251956
1795372280
249951116
126991137

2053654587
1671659035
1081266376
1467384084
1068948983

769812819
673887940
506079764
78126602

1449793615

144

123408134
279851527
25918206

1313470009
1973272912
1363774876
1964472944
762430696
1120463904
2122378820
1351423507
773686062
1530940798
119025595

41053920743

539712780
364849192
906071962

9072619
1165804618
1601965645
1273904485
1013454024
407593237

1656650157
1478308453
1894682026
1087225688
193080365
320791323
302803943
133671222

1596438000
1242574742
1943290424
1774412320
894947055
283138655
900597425
1229537879
1796116157
807338923
168485917
224721985
823063902
96408747

1405245447
1510846185
2069670600
1666064138
1298966685
1923476645
951894902
1112045946
794837508
1457692859
343823458
169895195

145

1379116455
1818831623
1723 360306
1351726752
1947015961
1864868926
270058166
1223765756

11633378
1773059583
1453891247
1671336745
749608580
1203455213
474053101

1038090897
1529368824
2124276371
923038665

1924690854
794844582
910344442
253656303
1634478624
406225050

1693410375
1476957915
1136879695
841790956
731422712
1754526917
1621098442
1540070805
1102786008
1161994250
1337565556
471351173
1657273749
521902362
962412522

ENDFILE.

146

LIST OF REFERENCES

1. CACI Products Company, MODSIM II, 3344 North Torrey Pines Court, La Jolla,
CA 92037.

2. Naval Postgraduate School NPSOR-91-09, Establishing Reliability Goals
for Naval Major Caliber Ammunition, by Michael P. Bailey, Marcelo Bartroli,
Alexander Callahan, and Keebom Kang, March 1991.

3. Borland International, Inc., Turbo C and Turbo C++, 1800 Green Hills Road,
P.O. BOX 66000, Scotts Valley, CA 95067.

4. Hughes, Wayne P. Jr., OA4602 Campaign Analysis Lecture, 7 July 1991, Naval
Postgraduate School, Monterey, CA 93943.

5. Ozden, Mufit H., "Graphical Programming of Simulation Models in an
Object-Oriented Environment," Simulation, volume 56 number 2, pp. 104-116,
February 1991.

6. Hu, David, An Object-Oriented Environment in C++, Management Information
Source, Inc., 1990.

7. Fishman, George S., Principles of Discrete Event Simulation, John Wiley & Sons,
Inc., 1978.

8. CACI Products Company, MODSIM II, The Language for Object-Oriented
Programming, Reference Manual, 1990 ed., 3344 North Torrey Pines Court, La
Jolla, CA 92037.

9. Law, Averill M. and Kelton, David W., Simulation Modeling and Analysis,
McGraw-Hill, 1982.

10. CACI Products Company, SIMGRAPHICS II, 3344 North Torrey Pines Court, La
Jolla, CA 92037.

147

BIBLIOGRAPHY

Brantley, Paul, Fox, Bennet L., and Schrage, Linus E., A Guide To Simulation, Second
Edition, Springer-Verlag New York, Inc., 1987.

Cox, Brad J., "There Is a Silver Bullet," Byte, volume 15, number 10, pp. 209-218,
Octobor 1990.

Gibson, Elizabeth, "Objects--Born and Bred," Byte, volume 15, number 10, pp. 245-254,
October 1990.

Hughes, Wayne P. Jr., Fleet Tactics, Naval Institute Press, 1986.

Naval Warfare Publication, Supporting Arms in Amphibious Operations, NWP 22-2
(Rev. B).

Rice, John A., Mathematical Statistics and Data Analysis, Wadsworth & Brooks/Cole
Advanced Books & Software, 1988.

Richardson, Doug, Naval Armament, Jane's Publishing Incorporated, 1982.

148

INITIAL DISTRIBUTION LIST

copies

a) Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

b) Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

c) LT Richard L. Darden 2
Submarine Officer Advance Course
Naval Submarine Base New London
Groton, CT 06349

d) Professor Michael P. Bailey, Code OR/BA 5
Naval Postgraduate School
Monterey, CA 93943-5000

e) Professor Marcelo Bartroli, Code OR/B1J 1
Naval Postgraduate School
Monterey, CA 93943-5000

f) LCDR Roger Stemp, Code OR/ST I
Naval Postgraduate School
Monterey, CA 93943-5000

g) John Bowden 1
Naval Weapons Support Center
Crane, IN 47522

h) Hal Duncan 1
CACI Products Company
3344 North Torrey Pines Court
La Jolla, CA 92037

149

